Spaces:
Running
Running
from pathlib import Path | |
from types import SimpleNamespace | |
import warnings | |
import numpy as np | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from typing import Optional, List, Callable | |
try: | |
from flash_attn.modules.mha import FlashCrossAttention | |
except ModuleNotFoundError: | |
FlashCrossAttention = None | |
if FlashCrossAttention or hasattr(F, 'scaled_dot_product_attention'): | |
FLASH_AVAILABLE = True | |
else: | |
FLASH_AVAILABLE = False | |
torch.backends.cudnn.deterministic = True | |
def normalize_keypoints( | |
kpts: torch.Tensor, | |
size: torch.Tensor) -> torch.Tensor: | |
if isinstance(size, torch.Size): | |
size = torch.tensor(size)[None] | |
shift = size.float().to(kpts) / 2 | |
scale = size.max(1).values.float().to(kpts) / 2 | |
kpts = (kpts - shift[:, None]) / scale[:, None, None] | |
return kpts | |
def rotate_half(x: torch.Tensor) -> torch.Tensor: | |
x = x.unflatten(-1, (-1, 2)) | |
x1, x2 = x.unbind(dim=-1) | |
return torch.stack((-x2, x1), dim=-1).flatten(start_dim=-2) | |
def apply_cached_rotary_emb( | |
freqs: torch.Tensor, t: torch.Tensor) -> torch.Tensor: | |
return (t * freqs[0]) + (rotate_half(t) * freqs[1]) | |
class LearnableFourierPositionalEncoding(nn.Module): | |
def __init__(self, M: int, dim: int, F_dim: int = None, | |
gamma: float = 1.0) -> None: | |
super().__init__() | |
F_dim = F_dim if F_dim is not None else dim | |
self.gamma = gamma | |
self.Wr = nn.Linear(M, F_dim // 2, bias=False) | |
nn.init.normal_(self.Wr.weight.data, mean=0, std=self.gamma ** -2) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
""" encode position vector """ | |
projected = self.Wr(x) | |
cosines, sines = torch.cos(projected), torch.sin(projected) | |
emb = torch.stack([cosines, sines], 0).unsqueeze(-3) | |
return emb.repeat_interleave(2, dim=-1) | |
class TokenConfidence(nn.Module): | |
def __init__(self, dim: int) -> None: | |
super().__init__() | |
self.token = nn.Sequential( | |
nn.Linear(dim, 1), | |
nn.Sigmoid() | |
) | |
def forward(self, desc0: torch.Tensor, desc1: torch.Tensor): | |
""" get confidence tokens """ | |
return ( | |
self.token(desc0.detach().float()).squeeze(-1), | |
self.token(desc1.detach().float()).squeeze(-1)) | |
class Attention(nn.Module): | |
def __init__(self, allow_flash: bool) -> None: | |
super().__init__() | |
if allow_flash and not FLASH_AVAILABLE: | |
warnings.warn( | |
'FlashAttention is not available. For optimal speed, ' | |
'consider installing torch >= 2.0 or flash-attn.', | |
stacklevel=2, | |
) | |
self.enable_flash = allow_flash and FLASH_AVAILABLE | |
if allow_flash and FlashCrossAttention: | |
self.flash_ = FlashCrossAttention() | |
def forward(self, q, k, v) -> torch.Tensor: | |
if self.enable_flash and q.device.type == 'cuda': | |
if FlashCrossAttention: | |
q, k, v = [x.transpose(-2, -3) for x in [q, k, v]] | |
m = self.flash_(q.half(), torch.stack([k, v], 2).half()) | |
return m.transpose(-2, -3).to(q.dtype) | |
else: # use torch 2.0 scaled_dot_product_attention with flash | |
args = [x.half().contiguous() for x in [q, k, v]] | |
with torch.backends.cuda.sdp_kernel(enable_flash=True): | |
return F.scaled_dot_product_attention(*args).to(q.dtype) | |
elif hasattr(F, 'scaled_dot_product_attention'): | |
args = [x.contiguous() for x in [q, k, v]] | |
return F.scaled_dot_product_attention(*args).to(q.dtype) | |
else: | |
s = q.shape[-1] ** -0.5 | |
attn = F.softmax(torch.einsum('...id,...jd->...ij', q, k) * s, -1) | |
return torch.einsum('...ij,...jd->...id', attn, v) | |
class Transformer(nn.Module): | |
def __init__(self, embed_dim: int, num_heads: int, | |
flash: bool = False, bias: bool = True) -> None: | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
assert self.embed_dim % num_heads == 0 | |
self.head_dim = self.embed_dim // num_heads | |
self.Wqkv = nn.Linear(embed_dim, 3*embed_dim, bias=bias) | |
self.inner_attn = Attention(flash) | |
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.ffn = nn.Sequential( | |
nn.Linear(2*embed_dim, 2*embed_dim), | |
nn.LayerNorm(2*embed_dim, elementwise_affine=True), | |
nn.GELU(), | |
nn.Linear(2*embed_dim, embed_dim) | |
) | |
def _forward(self, x: torch.Tensor, | |
encoding: Optional[torch.Tensor] = None): | |
qkv = self.Wqkv(x) | |
qkv = qkv.unflatten(-1, (self.num_heads, -1, 3)).transpose(1, 2) | |
q, k, v = qkv[..., 0], qkv[..., 1], qkv[..., 2] | |
if encoding is not None: | |
q = apply_cached_rotary_emb(encoding, q) | |
k = apply_cached_rotary_emb(encoding, k) | |
context = self.inner_attn(q, k, v) | |
message = self.out_proj( | |
context.transpose(1, 2).flatten(start_dim=-2)) | |
return x + self.ffn(torch.cat([x, message], -1)) | |
def forward(self, x0, x1, encoding0=None, encoding1=None): | |
return self._forward(x0, encoding0), self._forward(x1, encoding1) | |
class CrossTransformer(nn.Module): | |
def __init__(self, embed_dim: int, num_heads: int, | |
flash: bool = False, bias: bool = True) -> None: | |
super().__init__() | |
self.heads = num_heads | |
dim_head = embed_dim // num_heads | |
self.scale = dim_head ** -0.5 | |
inner_dim = dim_head * num_heads | |
self.to_qk = nn.Linear(embed_dim, inner_dim, bias=bias) | |
self.to_v = nn.Linear(embed_dim, inner_dim, bias=bias) | |
self.to_out = nn.Linear(inner_dim, embed_dim, bias=bias) | |
self.ffn = nn.Sequential( | |
nn.Linear(2*embed_dim, 2*embed_dim), | |
nn.LayerNorm(2*embed_dim, elementwise_affine=True), | |
nn.GELU(), | |
nn.Linear(2*embed_dim, embed_dim) | |
) | |
if flash and FLASH_AVAILABLE: | |
self.flash = Attention(True) | |
else: | |
self.flash = None | |
def map_(self, func: Callable, x0: torch.Tensor, x1: torch.Tensor): | |
return func(x0), func(x1) | |
def forward(self, x0: torch.Tensor, x1: torch.Tensor) -> List[torch.Tensor]: | |
qk0, qk1 = self.map_(self.to_qk, x0, x1) | |
v0, v1 = self.map_(self.to_v, x0, x1) | |
qk0, qk1, v0, v1 = map( | |
lambda t: t.unflatten(-1, (self.heads, -1)).transpose(1, 2), | |
(qk0, qk1, v0, v1)) | |
if self.flash is not None: | |
m0 = self.flash(qk0, qk1, v1) | |
m1 = self.flash(qk1, qk0, v0) | |
else: | |
qk0, qk1 = qk0 * self.scale**0.5, qk1 * self.scale**0.5 | |
sim = torch.einsum('b h i d, b h j d -> b h i j', qk0, qk1) | |
attn01 = F.softmax(sim, dim=-1) | |
attn10 = F.softmax(sim.transpose(-2, -1).contiguous(), dim=-1) | |
m0 = torch.einsum('bhij, bhjd -> bhid', attn01, v1) | |
m1 = torch.einsum('bhji, bhjd -> bhid', attn10.transpose(-2, -1), v0) | |
m0, m1 = self.map_(lambda t: t.transpose(1, 2).flatten(start_dim=-2), | |
m0, m1) | |
m0, m1 = self.map_(self.to_out, m0, m1) | |
x0 = x0 + self.ffn(torch.cat([x0, m0], -1)) | |
x1 = x1 + self.ffn(torch.cat([x1, m1], -1)) | |
return x0, x1 | |
def sigmoid_log_double_softmax( | |
sim: torch.Tensor, z0: torch.Tensor, z1: torch.Tensor) -> torch.Tensor: | |
""" create the log assignment matrix from logits and similarity""" | |
b, m, n = sim.shape | |
certainties = F.logsigmoid(z0) + F.logsigmoid(z1).transpose(1, 2) | |
scores0 = F.log_softmax(sim, 2) | |
scores1 = F.log_softmax( | |
sim.transpose(-1, -2).contiguous(), 2).transpose(-1, -2) | |
scores = sim.new_full((b, m+1, n+1), 0) | |
scores[:, :m, :n] = (scores0 + scores1 + certainties) | |
scores[:, :-1, -1] = F.logsigmoid(-z0.squeeze(-1)) | |
scores[:, -1, :-1] = F.logsigmoid(-z1.squeeze(-1)) | |
return scores | |
class MatchAssignment(nn.Module): | |
def __init__(self, dim: int) -> None: | |
super().__init__() | |
self.dim = dim | |
self.matchability = nn.Linear(dim, 1, bias=True) | |
self.final_proj = nn.Linear(dim, dim, bias=True) | |
def forward(self, desc0: torch.Tensor, desc1: torch.Tensor): | |
""" build assignment matrix from descriptors """ | |
mdesc0, mdesc1 = self.final_proj(desc0), self.final_proj(desc1) | |
_, _, d = mdesc0.shape | |
mdesc0, mdesc1 = mdesc0 / d**.25, mdesc1 / d**.25 | |
sim = torch.einsum('bmd,bnd->bmn', mdesc0, mdesc1) | |
z0 = self.matchability(desc0) | |
z1 = self.matchability(desc1) | |
scores = sigmoid_log_double_softmax(sim, z0, z1) | |
return scores, sim | |
def scores(self, desc0: torch.Tensor, desc1: torch.Tensor): | |
m0 = torch.sigmoid(self.matchability(desc0)).squeeze(-1) | |
m1 = torch.sigmoid(self.matchability(desc1)).squeeze(-1) | |
return m0, m1 | |
def filter_matches(scores: torch.Tensor, th: float): | |
""" obtain matches from a log assignment matrix [Bx M+1 x N+1]""" | |
max0, max1 = scores[:, :-1, :-1].max(2), scores[:, :-1, :-1].max(1) | |
m0, m1 = max0.indices, max1.indices | |
mutual0 = torch.arange(m0.shape[1]).to(m0)[None] == m1.gather(1, m0) | |
mutual1 = torch.arange(m1.shape[1]).to(m1)[None] == m0.gather(1, m1) | |
max0_exp = max0.values.exp() | |
zero = max0_exp.new_tensor(0) | |
mscores0 = torch.where(mutual0, max0_exp, zero) | |
mscores1 = torch.where(mutual1, mscores0.gather(1, m1), zero) | |
if th is not None: | |
valid0 = mutual0 & (mscores0 > th) | |
else: | |
valid0 = mutual0 | |
valid1 = mutual1 & valid0.gather(1, m1) | |
m0 = torch.where(valid0, m0, m0.new_tensor(-1)) | |
m1 = torch.where(valid1, m1, m1.new_tensor(-1)) | |
return m0, m1, mscores0, mscores1 | |
class LightGlue(nn.Module): | |
default_conf = { | |
'name': 'lightglue', # just for interfacing | |
'input_dim': 256, # input descriptor dimension (autoselected from weights) | |
'descriptor_dim': 256, | |
'n_layers': 9, | |
'num_heads': 4, | |
'flash': True, # enable FlashAttention if available. | |
'mp': False, # enable mixed precision | |
'depth_confidence': 0.95, # early stopping, disable with -1 | |
'width_confidence': 0.99, # point pruning, disable with -1 | |
'filter_threshold': 0.1, # match threshold | |
'weights': None, | |
} | |
required_data_keys = [ | |
'image0', 'image1'] | |
version = "v0.1_arxiv" | |
url = "https://github.com/cvg/LightGlue/releases/download/{}/{}_lightglue.pth" | |
features = { | |
'superpoint': ('superpoint_lightglue', 256), | |
'disk': ('disk_lightglue', 128) | |
} | |
def __init__(self, features='superpoint', **conf) -> None: | |
super().__init__() | |
self.conf = {**self.default_conf, **conf} | |
if features is not None: | |
assert (features in list(self.features.keys())) | |
self.conf['weights'], self.conf['input_dim'] = \ | |
self.features[features] | |
self.conf = conf = SimpleNamespace(**self.conf) | |
if conf.input_dim != conf.descriptor_dim: | |
self.input_proj = nn.Linear( | |
conf.input_dim, conf.descriptor_dim, bias=True) | |
else: | |
self.input_proj = nn.Identity() | |
head_dim = conf.descriptor_dim // conf.num_heads | |
self.posenc = LearnableFourierPositionalEncoding(2, head_dim, head_dim) | |
h, n, d = conf.num_heads, conf.n_layers, conf.descriptor_dim | |
self.self_attn = nn.ModuleList( | |
[Transformer(d, h, conf.flash) for _ in range(n)]) | |
self.cross_attn = nn.ModuleList( | |
[CrossTransformer(d, h, conf.flash) for _ in range(n)]) | |
self.log_assignment = nn.ModuleList( | |
[MatchAssignment(d) for _ in range(n)]) | |
self.token_confidence = nn.ModuleList([ | |
TokenConfidence(d) for _ in range(n-1)]) | |
if features is not None: | |
fname = f'{conf.weights}_{self.version}.pth'.replace('.', '-') | |
state_dict = torch.hub.load_state_dict_from_url( | |
self.url.format(self.version, features), file_name=fname) | |
self.load_state_dict(state_dict, strict=False) | |
elif conf.weights is not None: | |
path = Path(__file__).parent | |
path = path / 'weights/{}.pth'.format(self.conf.weights) | |
state_dict = torch.load(str(path), map_location='cpu') | |
self.load_state_dict(state_dict, strict=False) | |
print('Loaded LightGlue model') | |
def forward(self, data: dict) -> dict: | |
""" | |
Match keypoints and descriptors between two images | |
Input (dict): | |
image0: dict | |
keypoints: [B x M x 2] | |
descriptors: [B x M x D] | |
image: [B x C x H x W] or image_size: [B x 2] | |
image1: dict | |
keypoints: [B x N x 2] | |
descriptors: [B x N x D] | |
image: [B x C x H x W] or image_size: [B x 2] | |
Output (dict): | |
log_assignment: [B x M+1 x N+1] | |
matches0: [B x M] | |
matching_scores0: [B x M] | |
matches1: [B x N] | |
matching_scores1: [B x N] | |
matches: List[[Si x 2]], scores: List[[Si]] | |
""" | |
with torch.autocast(enabled=self.conf.mp, device_type='cuda'): | |
return self._forward(data) | |
def _forward(self, data: dict) -> dict: | |
for key in self.required_data_keys: | |
assert key in data, f'Missing key {key} in data' | |
data0, data1 = data['image0'], data['image1'] | |
kpts0_, kpts1_ = data0['keypoints'], data1['keypoints'] | |
b, m, _ = kpts0_.shape | |
b, n, _ = kpts1_.shape | |
size0, size1 = data0.get('image_size'), data1.get('image_size') | |
size0 = size0 if size0 is not None else data0['image'].shape[-2:][::-1] | |
size1 = size1 if size1 is not None else data1['image'].shape[-2:][::-1] | |
kpts0 = normalize_keypoints(kpts0_, size=size0) | |
kpts1 = normalize_keypoints(kpts1_, size=size1) | |
assert torch.all(kpts0 >= -1) and torch.all(kpts0 <= 1) | |
assert torch.all(kpts1 >= -1) and torch.all(kpts1 <= 1) | |
desc0 = data0['descriptors'].detach() | |
desc1 = data1['descriptors'].detach() | |
assert desc0.shape[-1] == self.conf.input_dim | |
assert desc1.shape[-1] == self.conf.input_dim | |
if torch.is_autocast_enabled(): | |
desc0 = desc0.half() | |
desc1 = desc1.half() | |
desc0 = self.input_proj(desc0) | |
desc1 = self.input_proj(desc1) | |
# cache positional embeddings | |
encoding0 = self.posenc(kpts0) | |
encoding1 = self.posenc(kpts1) | |
# GNN + final_proj + assignment | |
ind0 = torch.arange(0, m).to(device=kpts0.device)[None] | |
ind1 = torch.arange(0, n).to(device=kpts0.device)[None] | |
prune0 = torch.ones_like(ind0) # store layer where pruning is detected | |
prune1 = torch.ones_like(ind1) | |
dec, wic = self.conf.depth_confidence, self.conf.width_confidence | |
token0, token1 = None, None | |
for i in range(self.conf.n_layers): | |
# self+cross attention | |
desc0, desc1 = self.self_attn[i]( | |
desc0, desc1, encoding0, encoding1) | |
desc0, desc1 = self.cross_attn[i](desc0, desc1) | |
if i == self.conf.n_layers - 1: | |
continue # no early stopping or adaptive width at last layer | |
if dec > 0: # early stopping | |
token0, token1 = self.token_confidence[i](desc0, desc1) | |
if self.stop(token0, token1, self.conf_th(i), dec, m+n): | |
break | |
if wic > 0: # point pruning | |
match0, match1 = self.log_assignment[i].scores(desc0, desc1) | |
mask0 = self.get_mask(token0, match0, self.conf_th(i), 1-wic) | |
mask1 = self.get_mask(token1, match1, self.conf_th(i), 1-wic) | |
ind0, ind1 = ind0[mask0][None], ind1[mask1][None] | |
desc0, desc1 = desc0[mask0][None], desc1[mask1][None] | |
if desc0.shape[-2] == 0 or desc1.shape[-2] == 0: | |
break | |
encoding0 = encoding0[:, :, mask0][:, None] | |
encoding1 = encoding1[:, :, mask1][:, None] | |
prune0[:, ind0] += 1 | |
prune1[:, ind1] += 1 | |
if wic > 0: # scatter with indices after pruning | |
scores_, _ = self.log_assignment[i](desc0, desc1) | |
dt, dev = scores_.dtype, scores_.device | |
scores = torch.zeros(b, m+1, n+1, dtype=dt, device=dev) | |
scores[:, :-1, :-1] = -torch.inf | |
scores[:, ind0[0], -1] = scores_[:, :-1, -1] | |
scores[:, -1, ind1[0]] = scores_[:, -1, :-1] | |
x, y = torch.meshgrid(ind0[0], ind1[0], indexing='ij') | |
scores[:, x, y] = scores_[:, :-1, :-1] | |
else: | |
scores, _ = self.log_assignment[i](desc0, desc1) | |
m0, m1, mscores0, mscores1 = filter_matches( | |
scores, self.conf.filter_threshold) | |
matches, mscores = [], [] | |
for k in range(b): | |
valid = m0[k] > -1 | |
matches.append(torch.stack([torch.where(valid)[0], m0[k][valid]], -1)) | |
mscores.append(mscores0[k][valid]) | |
return { | |
'log_assignment': scores, | |
'matches0': m0, | |
'matches1': m1, | |
'matching_scores0': mscores0, | |
'matching_scores1': mscores1, | |
'stop': i+1, | |
'prune0': prune0, | |
'prune1': prune1, | |
'matches': matches, | |
'scores': mscores, | |
} | |
def conf_th(self, i: int) -> float: | |
""" scaled confidence threshold """ | |
return np.clip( | |
0.8 + 0.1 * np.exp(-4.0 * i / self.conf.n_layers), 0, 1) | |
def get_mask(self, confidence: torch.Tensor, match: torch.Tensor, | |
conf_th: float, match_th: float) -> torch.Tensor: | |
""" mask points which should be removed """ | |
if conf_th and confidence is not None: | |
mask = torch.where(confidence > conf_th, match, | |
match.new_tensor(1.0)) > match_th | |
else: | |
mask = match > match_th | |
return mask | |
def stop(self, token0: torch.Tensor, token1: torch.Tensor, | |
conf_th: float, inl_th: float, seql: int) -> torch.Tensor: | |
""" evaluate stopping condition""" | |
tokens = torch.cat([token0, token1], -1) | |
if conf_th: | |
pos = 1.0 - (tokens < conf_th).float().sum() / seql | |
return pos > inl_th | |
else: | |
return tokens.mean() > inl_th | |