Spaces:
Running
Running
""" | |
2D visualization primitives based on Matplotlib. | |
1) Plot images with `plot_images`. | |
2) Call `plot_keypoints` or `plot_matches` any number of times. | |
3) Optionally: save a .png or .pdf plot (nice in papers!) with `save_plot`. | |
""" | |
import matplotlib | |
import matplotlib.pyplot as plt | |
import matplotlib.patheffects as path_effects | |
import numpy as np | |
import torch | |
def cm_RdGn(x): | |
"""Custom colormap: red (0) -> yellow (0.5) -> green (1).""" | |
x = np.clip(x, 0, 1)[..., None]*2 | |
c = x*np.array([[0, 1., 0]]) + (2-x)*np.array([[1., 0, 0]]) | |
return np.clip(c, 0, 1) | |
def cm_BlRdGn(x_): | |
"""Custom colormap: blue (-1) -> red (0.0) -> green (1).""" | |
x = np.clip(x_, 0, 1)[..., None]*2 | |
c = x*np.array([[0, 1., 0, 1.]]) + (2-x)*np.array([[1., 0, 0, 1.]]) | |
xn = -np.clip(x_, -1, 0)[..., None]*2 | |
cn = xn*np.array([[0, 0.1, 1, 1.]]) + (2-xn)*np.array([[1., 0, 0, 1.]]) | |
out = np.clip(np.where(x_[..., None] < 0, cn, c), 0, 1) | |
return out | |
def cm_prune(x_): | |
""" Custom colormap to visualize pruning """ | |
if isinstance(x_, torch.Tensor): | |
x_ = x_.cpu().numpy() | |
max_i = max(x_) | |
norm_x = np.where(x_ == max_i, -1, (x_-1) / 9) | |
return cm_BlRdGn(norm_x) | |
def plot_images(imgs, titles=None, cmaps='gray', dpi=100, pad=.5, | |
adaptive=True): | |
"""Plot a set of images horizontally. | |
Args: | |
imgs: list of NumPy RGB (H, W, 3) or PyTorch RGB (3, H, W) or mono (H, W). | |
titles: a list of strings, as titles for each image. | |
cmaps: colormaps for monochrome images. | |
adaptive: whether the figure size should fit the image aspect ratios. | |
""" | |
# conversion to (H, W, 3) for torch.Tensor | |
imgs = [img.permute(1, 2, 0).cpu().numpy() | |
if (isinstance(img, torch.Tensor) and img.dim() == 3) else img | |
for img in imgs] | |
n = len(imgs) | |
if not isinstance(cmaps, (list, tuple)): | |
cmaps = [cmaps] * n | |
if adaptive: | |
ratios = [i.shape[1] / i.shape[0] for i in imgs] # W / H | |
else: | |
ratios = [4/3] * n | |
figsize = [sum(ratios)*4.5, 4.5] | |
fig, ax = plt.subplots( | |
1, n, figsize=figsize, dpi=dpi, gridspec_kw={'width_ratios': ratios}) | |
if n == 1: | |
ax = [ax] | |
for i in range(n): | |
ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i])) | |
ax[i].get_yaxis().set_ticks([]) | |
ax[i].get_xaxis().set_ticks([]) | |
ax[i].set_axis_off() | |
for spine in ax[i].spines.values(): # remove frame | |
spine.set_visible(False) | |
if titles: | |
ax[i].set_title(titles[i]) | |
fig.tight_layout(pad=pad) | |
def plot_keypoints(kpts, colors='lime', ps=4, axes=None, a=1.0): | |
"""Plot keypoints for existing images. | |
Args: | |
kpts: list of ndarrays of size (N, 2). | |
colors: string, or list of list of tuples (one for each keypoints). | |
ps: size of the keypoints as float. | |
""" | |
if not isinstance(colors, list): | |
colors = [colors] * len(kpts) | |
if not isinstance(a, list): | |
a = [a] * len(kpts) | |
if axes is None: | |
axes = plt.gcf().axes | |
for ax, k, c, alpha in zip(axes, kpts, colors, a): | |
if isinstance(k, torch.Tensor): | |
k = k.cpu().numpy() | |
ax.scatter(k[:, 0], k[:, 1], c=c, s=ps, linewidths=0, alpha=alpha) | |
def plot_matches(kpts0, kpts1, color=None, lw=1.5, ps=4, a=1., labels=None, | |
axes=None): | |
"""Plot matches for a pair of existing images. | |
Args: | |
kpts0, kpts1: corresponding keypoints of size (N, 2). | |
color: color of each match, string or RGB tuple. Random if not given. | |
lw: width of the lines. | |
ps: size of the end points (no endpoint if ps=0) | |
indices: indices of the images to draw the matches on. | |
a: alpha opacity of the match lines. | |
""" | |
fig = plt.gcf() | |
if axes is None: | |
ax = fig.axes | |
ax0, ax1 = ax[0], ax[1] | |
else: | |
ax0, ax1 = axes | |
if isinstance(kpts0, torch.Tensor): | |
kpts0 = kpts0.cpu().numpy() | |
if isinstance(kpts1, torch.Tensor): | |
kpts1 = kpts1.cpu().numpy() | |
assert len(kpts0) == len(kpts1) | |
if color is None: | |
color = matplotlib.cm.hsv(np.random.rand(len(kpts0))).tolist() | |
elif len(color) > 0 and not isinstance(color[0], (tuple, list)): | |
color = [color] * len(kpts0) | |
if lw > 0: | |
for i in range(len(kpts0)): | |
line = matplotlib.patches.ConnectionPatch( | |
xyA=(kpts0[i, 0], kpts0[i, 1]), xyB=(kpts1[i, 0], kpts1[i, 1]), | |
coordsA=ax0.transData, coordsB=ax1.transData, | |
axesA=ax0, axesB=ax1, | |
zorder=1, color=color[i], linewidth=lw, clip_on=True, | |
alpha=a, label=None if labels is None else labels[i], | |
picker=5.0) | |
line.set_annotation_clip(True) | |
fig.add_artist(line) | |
# freeze the axes to prevent the transform to change | |
ax0.autoscale(enable=False) | |
ax1.autoscale(enable=False) | |
if ps > 0: | |
ax0.scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps) | |
ax1.scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps) | |
def add_text(idx, text, pos=(0.01, 0.99), fs=15, color='w', | |
lcolor='k', lwidth=2, ha='left', va='top'): | |
ax = plt.gcf().axes[idx] | |
t = ax.text(*pos, text, fontsize=fs, ha=ha, va=va, | |
color=color, transform=ax.transAxes) | |
if lcolor is not None: | |
t.set_path_effects([ | |
path_effects.Stroke(linewidth=lwidth, foreground=lcolor), | |
path_effects.Normal()]) | |
def save_plot(path, **kw): | |
"""Save the current figure without any white margin.""" | |
plt.savefig(path, bbox_inches='tight', pad_inches=0, **kw) | |