Spaces:
Sleeping
Sleeping
''' | |
COTR two view reconstruction with known extrinsic/intrinsic demo | |
''' | |
import argparse | |
import os | |
import time | |
import numpy as np | |
import torch | |
import imageio | |
import open3d as o3d | |
from COTR.utils import utils, debug_utils | |
from COTR.models import build_model | |
from COTR.options.options import * | |
from COTR.options.options_utils import * | |
from COTR.inference.sparse_engine import SparseEngine, FasterSparseEngine | |
from COTR.projector import pcd_projector | |
utils.fix_randomness(0) | |
torch.set_grad_enabled(False) | |
def triangulate_rays_to_pcd(center_a, dir_a, center_b, dir_b): | |
A = center_a | |
a = dir_a / np.linalg.norm(dir_a, axis=1, keepdims=True) | |
B = center_b | |
b = dir_b / np.linalg.norm(dir_b, axis=1, keepdims=True) | |
c = B - A | |
D = A + a * ((-np.sum(a * b, axis=1) * np.sum(b * c, axis=1) + np.sum(a * c, axis=1) * np.sum(b * b, axis=1)) / (np.sum(a * a, axis=1) * np.sum(b * b, axis=1) - np.sum(a * b, axis=1) * np.sum(a * b, axis=1)))[..., None] | |
return D | |
def main(opt): | |
model = build_model(opt) | |
model = model.cuda() | |
weights = torch.load(opt.load_weights_path, map_location='cpu')['model_state_dict'] | |
utils.safe_load_weights(model, weights) | |
model = model.eval() | |
img_a = imageio.imread('./sample_data/imgs/img_0.jpg', pilmode='RGB') | |
img_b = imageio.imread('./sample_data/imgs/img_1.jpg', pilmode='RGB') | |
if opt.faster_infer: | |
engine = FasterSparseEngine(model, 32, mode='tile') | |
else: | |
engine = SparseEngine(model, 32, mode='tile') | |
t0 = time.time() | |
corrs = engine.cotr_corr_multiscale_with_cycle_consistency(img_a, img_b, np.linspace(0.5, 0.0625, 4), 1, max_corrs=opt.max_corrs, queries_a=None) | |
t1 = time.time() | |
print(f'spent {t1-t0} seconds for {opt.max_corrs} correspondences.') | |
camera_a = np.load('./sample_data/camera_0.npy', allow_pickle=True).item() | |
camera_b = np.load('./sample_data/camera_1.npy', allow_pickle=True).item() | |
center_a = camera_a['cam_center'] | |
center_b = camera_b['cam_center'] | |
rays_a = pcd_projector.PointCloudProjector.pcd_2d_to_pcd_3d_np(corrs[:, :2], np.ones([corrs.shape[0], 1]) * 2, camera_a['intrinsic'], motion=camera_a['c2w']) | |
rays_b = pcd_projector.PointCloudProjector.pcd_2d_to_pcd_3d_np(corrs[:, 2:], np.ones([corrs.shape[0], 1]) * 2, camera_b['intrinsic'], motion=camera_b['c2w']) | |
dir_a = rays_a - center_a | |
dir_b = rays_b - center_b | |
center_a = np.array([center_a] * corrs.shape[0]) | |
center_b = np.array([center_b] * corrs.shape[0]) | |
points = triangulate_rays_to_pcd(center_a, dir_a, center_b, dir_b) | |
colors = (img_a[tuple(np.floor(corrs[:, :2]).astype(int)[:, ::-1].T)] / 255 + img_b[tuple(np.floor(corrs[:, 2:]).astype(int)[:, ::-1].T)] / 255) / 2 | |
colors = np.array(colors) | |
pcd = o3d.geometry.PointCloud() | |
pcd.points = o3d.utility.Vector3dVector(points) | |
pcd.colors = o3d.utility.Vector3dVector(colors) | |
o3d.visualization.draw_geometries([pcd]) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
set_COTR_arguments(parser) | |
parser.add_argument('--out_dir', type=str, default=general_config['out'], help='out directory') | |
parser.add_argument('--load_weights', type=str, default=None, help='load a pretrained set of weights, you need to provide the model id') | |
parser.add_argument('--max_corrs', type=int, default=2048, help='number of correspondences') | |
parser.add_argument('--faster_infer', type=str2bool, default=False, help='use fatser inference') | |
opt = parser.parse_args() | |
opt.command = ' '.join(sys.argv) | |
layer_2_channels = {'layer1': 256, | |
'layer2': 512, | |
'layer3': 1024, | |
'layer4': 2048, } | |
opt.dim_feedforward = layer_2_channels[opt.layer] | |
if opt.load_weights: | |
opt.load_weights_path = os.path.join(opt.out_dir, opt.load_weights, 'checkpoint.pth.tar') | |
print_opt(opt) | |
main(opt) | |