Spaces:
Sleeping
Sleeping
''' | |
Manually passing scale to COTR, skip the scale difference estimation. | |
''' | |
import argparse | |
import os | |
import time | |
import cv2 | |
import numpy as np | |
import torch | |
import imageio | |
from scipy.spatial import distance_matrix | |
import matplotlib.pyplot as plt | |
from COTR.utils import utils, debug_utils | |
from COTR.models import build_model | |
from COTR.options.options import * | |
from COTR.options.options_utils import * | |
from COTR.inference.sparse_engine import SparseEngine | |
utils.fix_randomness(0) | |
torch.set_grad_enabled(False) | |
def main(opt): | |
model = build_model(opt) | |
model = model.cuda() | |
weights = torch.load(opt.load_weights_path)['model_state_dict'] | |
utils.safe_load_weights(model, weights) | |
model = model.eval() | |
img_a = imageio.imread('./sample_data/imgs/petrzin_01.png') | |
img_b = imageio.imread('./sample_data/imgs/petrzin_02.png') | |
img_a_area = 1.0 | |
img_b_area = 1.0 | |
gt_corrs = np.loadtxt('./sample_data/petrzin_pts.txt') | |
kp_a = gt_corrs[:, :2] | |
kp_b = gt_corrs[:, 2:] | |
engine = SparseEngine(model, 32, mode='tile') | |
t0 = time.time() | |
corrs = engine.cotr_corr_multiscale(img_a, img_b, np.linspace(0.75, 0.1, 4), 1, max_corrs=kp_a.shape[0], queries_a=kp_a, force=True, areas=[img_a_area, img_b_area]) | |
t1 = time.time() | |
print(f'COTR spent {t1-t0} seconds.') | |
utils.visualize_corrs(img_a, img_b, corrs) | |
plt.imshow(img_b) | |
plt.scatter(kp_b[:,0], kp_b[:,1]) | |
plt.scatter(corrs[:,2], corrs[:,3]) | |
plt.plot(np.stack([kp_b[:,0], corrs[:,2]], axis=1).T, np.stack([kp_b[:,1], corrs[:,3]], axis=1).T, color=[1,0,0]) | |
plt.show() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
set_COTR_arguments(parser) | |
parser.add_argument('--out_dir', type=str, default=general_config['out'], help='out directory') | |
parser.add_argument('--load_weights', type=str, default=None, help='load a pretrained set of weights, you need to provide the model id') | |
opt = parser.parse_args() | |
opt.command = ' '.join(sys.argv) | |
layer_2_channels = {'layer1': 256, | |
'layer2': 512, | |
'layer3': 1024, | |
'layer4': 2048, } | |
opt.dim_feedforward = layer_2_channels[opt.layer] | |
if opt.load_weights: | |
opt.load_weights_path = os.path.join(opt.out_dir, opt.load_weights, 'checkpoint.pth.tar') | |
print_opt(opt) | |
main(opt) | |