Spaces:
Sleeping
Sleeping
# Standard libraries | |
import itertools | |
import numpy as np | |
# PyTorch | |
import torch | |
import torch.nn as nn | |
# Local | |
from . import JPEG_utils | |
class rgb_to_ycbcr_jpeg(nn.Module): | |
"""Converts RGB image to YCbCr | |
Input: | |
image(tensor): batch x 3 x height x width | |
Outpput: | |
result(tensor): batch x height x width x 3 | |
""" | |
def __init__(self): | |
super(rgb_to_ycbcr_jpeg, self).__init__() | |
matrix = np.array( | |
[ | |
[0.299, 0.587, 0.114], | |
[-0.168736, -0.331264, 0.5], | |
[0.5, -0.418688, -0.081312], | |
], | |
dtype=np.float32, | |
).T | |
self.shift = nn.Parameter(torch.tensor([0.0, 128.0, 128.0])) | |
# | |
self.matrix = nn.Parameter(torch.from_numpy(matrix)) | |
def forward(self, image): | |
image = image.permute(0, 2, 3, 1) | |
result = torch.tensordot(image, self.matrix, dims=1) + self.shift | |
# result = torch.from_numpy(result) | |
result.view(image.shape) | |
return result | |
class chroma_subsampling(nn.Module): | |
"""Chroma subsampling on CbCv channels | |
Input: | |
image(tensor): batch x height x width x 3 | |
Output: | |
y(tensor): batch x height x width | |
cb(tensor): batch x height/2 x width/2 | |
cr(tensor): batch x height/2 x width/2 | |
""" | |
def __init__(self): | |
super(chroma_subsampling, self).__init__() | |
def forward(self, image): | |
image_2 = image.permute(0, 3, 1, 2).clone() | |
avg_pool = nn.AvgPool2d(kernel_size=2, stride=(2, 2), count_include_pad=False) | |
cb = avg_pool(image_2[:, 1, :, :].unsqueeze(1)) | |
cr = avg_pool(image_2[:, 2, :, :].unsqueeze(1)) | |
cb = cb.permute(0, 2, 3, 1) | |
cr = cr.permute(0, 2, 3, 1) | |
return image[:, :, :, 0], cb.squeeze(3), cr.squeeze(3) | |
class block_splitting(nn.Module): | |
"""Splitting image into patches | |
Input: | |
image(tensor): batch x height x width | |
Output: | |
patch(tensor): batch x h*w/64 x h x w | |
""" | |
def __init__(self): | |
super(block_splitting, self).__init__() | |
self.k = 8 | |
def forward(self, image): | |
height, width = image.shape[1:3] | |
# print(height, width) | |
batch_size = image.shape[0] | |
# print(image.shape) | |
image_reshaped = image.view(batch_size, height // self.k, self.k, -1, self.k) | |
image_transposed = image_reshaped.permute(0, 1, 3, 2, 4) | |
return image_transposed.contiguous().view(batch_size, -1, self.k, self.k) | |
class dct_8x8(nn.Module): | |
"""Discrete Cosine Transformation | |
Input: | |
image(tensor): batch x height x width | |
Output: | |
dcp(tensor): batch x height x width | |
""" | |
def __init__(self): | |
super(dct_8x8, self).__init__() | |
tensor = np.zeros((8, 8, 8, 8), dtype=np.float32) | |
for x, y, u, v in itertools.product(range(8), repeat=4): | |
tensor[x, y, u, v] = np.cos((2 * x + 1) * u * np.pi / 16) * np.cos( | |
(2 * y + 1) * v * np.pi / 16 | |
) | |
alpha = np.array([1.0 / np.sqrt(2)] + [1] * 7) | |
# | |
self.tensor = nn.Parameter(torch.from_numpy(tensor).float()) | |
self.scale = nn.Parameter( | |
torch.from_numpy(np.outer(alpha, alpha) * 0.25).float() | |
) | |
def forward(self, image): | |
image = image - 128 | |
result = self.scale * torch.tensordot(image, self.tensor, dims=2) | |
result.view(image.shape) | |
return result | |
class y_quantize(nn.Module): | |
"""JPEG Quantization for Y channel | |
Input: | |
image(tensor): batch x height x width | |
rounding(function): rounding function to use | |
factor(float): Degree of compression | |
Output: | |
image(tensor): batch x height x width | |
""" | |
def __init__(self, rounding, factor=1): | |
super(y_quantize, self).__init__() | |
self.rounding = rounding | |
self.factor = factor | |
self.y_table = JPEG_utils.y_table | |
def forward(self, image): | |
image = image.float() / (self.y_table * self.factor) | |
image = self.rounding(image) | |
return image | |
class c_quantize(nn.Module): | |
"""JPEG Quantization for CrCb channels | |
Input: | |
image(tensor): batch x height x width | |
rounding(function): rounding function to use | |
factor(float): Degree of compression | |
Output: | |
image(tensor): batch x height x width | |
""" | |
def __init__(self, rounding, factor=1): | |
super(c_quantize, self).__init__() | |
self.rounding = rounding | |
self.factor = factor | |
self.c_table = JPEG_utils.c_table | |
def forward(self, image): | |
image = image.float() / (self.c_table * self.factor) | |
image = self.rounding(image) | |
return image | |
class compress_jpeg(nn.Module): | |
"""Full JPEG compression algortihm | |
Input: | |
imgs(tensor): batch x 3 x height x width | |
rounding(function): rounding function to use | |
factor(float): Compression factor | |
Ouput: | |
compressed(dict(tensor)): batch x h*w/64 x 8 x 8 | |
""" | |
def __init__(self, rounding=torch.round, factor=1): | |
super(compress_jpeg, self).__init__() | |
self.l1 = nn.Sequential( | |
rgb_to_ycbcr_jpeg(), | |
# comment this line if no subsampling | |
chroma_subsampling(), | |
) | |
self.l2 = nn.Sequential(block_splitting(), dct_8x8()) | |
self.c_quantize = c_quantize(rounding=rounding, factor=factor) | |
self.y_quantize = y_quantize(rounding=rounding, factor=factor) | |
def forward(self, image): | |
y, cb, cr = self.l1(image * 255) # modify | |
# y, cb, cr = result[:,:,:,0], result[:,:,:,1], result[:,:,:,2] | |
components = {"y": y, "cb": cb, "cr": cr} | |
for k in components.keys(): | |
comp = self.l2(components[k]) | |
# print(comp.shape) | |
if k in ("cb", "cr"): | |
comp = self.c_quantize(comp) | |
else: | |
comp = self.y_quantize(comp) | |
components[k] = comp | |
return components["y"], components["cb"], components["cr"] | |