Spaces:
Sleeping
Sleeping
from curses import is_term_resized | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torchvision import models | |
from utils import image_grid | |
class ConvBlock(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(ConvBlock, self).__init__() | |
self.conv = nn.Sequential( | |
nn.Conv2d( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False, | |
), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d( | |
out_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False, | |
), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU(inplace=True), | |
) | |
def forward(self, x): | |
return self.conv(x) | |
class DilationConv3x3(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(DilationConv3x3, self).__init__() | |
self.conv = nn.Conv2d( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=2, | |
dilation=2, | |
bias=False, | |
) | |
self.bn = nn.BatchNorm2d(out_channels) | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.bn(x) | |
return x | |
class InterestPointModule(nn.Module): | |
def __init__(self, is_test=False): | |
super(InterestPointModule, self).__init__() | |
self.is_test = is_test | |
model = models.vgg16_bn(pretrained=True) | |
# use the first 23 layers as encoder | |
self.encoder = nn.Sequential(*list(model.features.children())[:33]) | |
# score head | |
self.score_head = nn.Sequential( | |
nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1, bias=False), | |
nn.BatchNorm2d(256), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1), | |
) | |
self.softmax = nn.Softmax(dim=1) | |
# location head | |
self.loc_head = nn.Sequential( | |
nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1, bias=False), | |
nn.BatchNorm2d(256), | |
nn.ReLU(inplace=True), | |
) | |
# location out | |
self.loc_out = nn.Conv2d(256, 2, kernel_size=3, stride=1, padding=1) | |
self.shift_out = nn.Conv2d(256, 1, kernel_size=3, stride=1, padding=1) | |
# descriptor out | |
self.des_out2 = DilationConv3x3(128, 256) | |
self.des_out3 = DilationConv3x3(256, 256) | |
self.des_out4 = DilationConv3x3(512, 256) | |
def forward(self, x): | |
B, _, H, W = x.shape | |
x = self.encoder[2](self.encoder[1](self.encoder[0](x))) | |
x = self.encoder[5](self.encoder[4](self.encoder[3](x))) | |
x = self.encoder[6](x) | |
x = self.encoder[9](self.encoder[8](self.encoder[7](x))) | |
x2 = self.encoder[12](self.encoder[11](self.encoder[10](x))) | |
x = self.encoder[13](x2) | |
x = self.encoder[16](self.encoder[15](self.encoder[14](x))) | |
x = self.encoder[19](self.encoder[18](self.encoder[17](x))) | |
x3 = self.encoder[22](self.encoder[21](self.encoder[20](x))) | |
x = self.encoder[23](x3) | |
x = self.encoder[26](self.encoder[25](self.encoder[24](x))) | |
x = self.encoder[29](self.encoder[28](self.encoder[27](x))) | |
x = self.encoder[32](self.encoder[31](self.encoder[30](x))) | |
B, _, Hc, Wc = x.shape | |
# score head | |
score_x = self.score_head(x) | |
aware = self.softmax(score_x[:, 0:3, :, :]) | |
score = score_x[:, 3, :, :].unsqueeze(1).sigmoid() | |
border_mask = torch.ones(B, Hc, Wc) | |
border_mask[:, 0] = 0 | |
border_mask[:, Hc - 1] = 0 | |
border_mask[:, :, 0] = 0 | |
border_mask[:, :, Wc - 1] = 0 | |
border_mask = border_mask.unsqueeze(1) | |
score = score * border_mask.to(score.device) | |
# location head | |
coord_x = self.loc_head(x) | |
coord_cell = self.loc_out(coord_x).tanh() | |
shift_ratio = self.shift_out(coord_x).sigmoid() * 2.0 | |
step = ((H / Hc) - 1) / 2.0 | |
center_base = ( | |
image_grid( | |
B, | |
Hc, | |
Wc, | |
dtype=coord_cell.dtype, | |
device=coord_cell.device, | |
ones=False, | |
normalized=False, | |
).mul(H / Hc) | |
+ step | |
) | |
coord_un = center_base.add(coord_cell.mul(shift_ratio * step)) | |
coord = coord_un.clone() | |
coord[:, 0] = torch.clamp(coord_un[:, 0], min=0, max=W - 1) | |
coord[:, 1] = torch.clamp(coord_un[:, 1], min=0, max=H - 1) | |
# descriptor block | |
desc_block = [] | |
desc_block.append(self.des_out2(x2)) | |
desc_block.append(self.des_out3(x3)) | |
desc_block.append(self.des_out4(x)) | |
desc_block.append(aware) | |
if self.is_test: | |
coord_norm = coord[:, :2].clone() | |
coord_norm[:, 0] = (coord_norm[:, 0] / (float(W - 1) / 2.0)) - 1.0 | |
coord_norm[:, 1] = (coord_norm[:, 1] / (float(H - 1) / 2.0)) - 1.0 | |
coord_norm = coord_norm.permute(0, 2, 3, 1) | |
desc2 = torch.nn.functional.grid_sample(desc_block[0], coord_norm) | |
desc3 = torch.nn.functional.grid_sample(desc_block[1], coord_norm) | |
desc4 = torch.nn.functional.grid_sample(desc_block[2], coord_norm) | |
aware = desc_block[3] | |
desc = ( | |
torch.mul(desc2, aware[:, 0, :, :]) | |
+ torch.mul(desc3, aware[:, 1, :, :]) | |
+ torch.mul(desc4, aware[:, 2, :, :]) | |
) | |
desc = desc.div( | |
torch.unsqueeze(torch.norm(desc, p=2, dim=1), 1) | |
) # Divide by norm to normalize. | |
return score, coord, desc | |
return score, coord, desc_block | |
class CorrespondenceModule(nn.Module): | |
def __init__(self, match_type="dual_softmax"): | |
super(CorrespondenceModule, self).__init__() | |
self.match_type = match_type | |
if self.match_type == "dual_softmax": | |
self.temperature = 0.1 | |
else: | |
raise NotImplementedError() | |
def forward(self, source_desc, target_desc): | |
b, c, h, w = source_desc.size() | |
source_desc = source_desc.div( | |
torch.unsqueeze(torch.norm(source_desc, p=2, dim=1), 1) | |
).view(b, -1, h * w) | |
target_desc = target_desc.div( | |
torch.unsqueeze(torch.norm(target_desc, p=2, dim=1), 1) | |
).view(b, -1, h * w) | |
if self.match_type == "dual_softmax": | |
sim_mat = ( | |
torch.einsum("bcm, bcn -> bmn", source_desc, target_desc) | |
/ self.temperature | |
) | |
confidence_matrix = F.softmax(sim_mat, 1) * F.softmax(sim_mat, 2) | |
else: | |
raise NotImplementedError() | |
return confidence_matrix | |