Spaces:
Sleeping
Sleeping
import argparse | |
import torch | |
from pathlib import Path | |
from typing import Dict, List, Union, Optional | |
import h5py | |
from types import SimpleNamespace | |
import cv2 | |
import numpy as np | |
from tqdm import tqdm | |
import pprint | |
import collections.abc as collections | |
import PIL.Image | |
import torchvision.transforms.functional as F | |
from . import extractors, logger | |
from .utils.base_model import dynamic_load | |
from .utils.parsers import parse_image_lists | |
from .utils.io import read_image, list_h5_names | |
""" | |
A set of standard configurations that can be directly selected from the command | |
line using their name. Each is a dictionary with the following entries: | |
- output: the name of the feature file that will be generated. | |
- model: the model configuration, as passed to a feature extractor. | |
- preprocessing: how to preprocess the images read from disk. | |
""" | |
confs = { | |
"superpoint_aachen": { | |
"output": "feats-superpoint-n4096-r1024", | |
"model": { | |
"name": "superpoint", | |
"nms_radius": 3, | |
"max_keypoints": 4096, | |
"keypoint_threshold": 0.005, | |
}, | |
"preprocessing": { | |
"grayscale": True, | |
"force_resize": True, | |
"resize_max": 1600, | |
"width": 640, | |
"height": 480, | |
"dfactor": 8, | |
}, | |
}, | |
# Resize images to 1600px even if they are originally smaller. | |
# Improves the keypoint localization if the images are of good quality. | |
"superpoint_max": { | |
"output": "feats-superpoint-n4096-rmax1600", | |
"model": { | |
"name": "superpoint", | |
"nms_radius": 3, | |
"max_keypoints": 4096, | |
"keypoint_threshold": 0.005, | |
}, | |
"preprocessing": { | |
"grayscale": True, | |
"force_resize": True, | |
"resize_max": 1600, | |
"width": 640, | |
"height": 480, | |
"dfactor": 8, | |
}, | |
}, | |
"superpoint_inloc": { | |
"output": "feats-superpoint-n4096-r1600", | |
"model": { | |
"name": "superpoint", | |
"nms_radius": 4, | |
"max_keypoints": 4096, | |
"keypoint_threshold": 0.005, | |
}, | |
"preprocessing": { | |
"grayscale": True, | |
"resize_max": 1600, | |
}, | |
}, | |
"r2d2": { | |
"output": "feats-r2d2-n5000-r1024", | |
"model": { | |
"name": "r2d2", | |
"max_keypoints": 5000, | |
"reliability_threshold": 0.7, | |
"repetability_threshold": 0.7, | |
}, | |
"preprocessing": { | |
"grayscale": False, | |
"force_resize": True, | |
"resize_max": 1024, | |
"width": 640, | |
"height": 480, | |
"dfactor": 8, | |
}, | |
}, | |
"d2net-ss": { | |
"output": "feats-d2net-ss-n5000-r1600", | |
"model": { | |
"name": "d2net", | |
"multiscale": False, | |
"max_keypoints": 5000, | |
}, | |
"preprocessing": { | |
"grayscale": False, | |
"resize_max": 1600, | |
}, | |
}, | |
"d2net-ms": { | |
"output": "feats-d2net-ms-n5000-r1600", | |
"model": { | |
"name": "d2net", | |
"multiscale": True, | |
"max_keypoints": 5000, | |
}, | |
"preprocessing": { | |
"grayscale": False, | |
"resize_max": 1600, | |
}, | |
}, | |
"rord": { | |
"output": "feats-rord-ss-n5000-r1600", | |
"model": { | |
"name": "rord", | |
"multiscale": False, | |
"max_keypoints": 5000, | |
}, | |
"preprocessing": { | |
"grayscale": False, | |
"resize_max": 1600, | |
}, | |
}, | |
"rootsift": { | |
"output": "feats-rootsift-n5000-r1600", | |
"model": { | |
"name": "dog", | |
"max_keypoints": 5000, | |
}, | |
"preprocessing": { | |
"grayscale": True, | |
"force_resize": True, | |
"resize_max": 1600, | |
"width": 640, | |
"height": 480, | |
"dfactor": 8, | |
}, | |
}, | |
"sift": { | |
"output": "feats-sift-n5000-r1600", | |
"model": { | |
"name": "dog", | |
"descriptor": "sift", | |
"max_keypoints": 5000, | |
}, | |
"preprocessing": { | |
"grayscale": True, | |
"force_resize": True, | |
"resize_max": 1600, | |
"width": 640, | |
"height": 480, | |
"dfactor": 8, | |
}, | |
}, | |
"sosnet": { | |
"output": "feats-sosnet-n5000-r1600", | |
"model": { | |
"name": "dog", | |
"descriptor": "sosnet", | |
"max_keypoints": 5000, | |
}, | |
"preprocessing": { | |
"grayscale": True, | |
"resize_max": 1600, | |
"force_resize": True, | |
"width": 640, | |
"height": 480, | |
"dfactor": 8, | |
}, | |
}, | |
"hardnet": { | |
"output": "feats-hardnet-n5000-r1600", | |
"model": { | |
"name": "dog", | |
"descriptor": "hardnet", | |
"max_keypoints": 5000, | |
}, | |
"preprocessing": { | |
"grayscale": True, | |
"resize_max": 1600, | |
"force_resize": True, | |
"width": 640, | |
"height": 480, | |
"dfactor": 8, | |
}, | |
}, | |
"disk": { | |
"output": "feats-disk-n5000-r1600", | |
"model": { | |
"name": "disk", | |
"max_keypoints": 5000, | |
}, | |
"preprocessing": { | |
"grayscale": False, | |
"resize_max": 1600, | |
}, | |
}, | |
"xfeat": { | |
"output": "feats-xfeat-n5000-r1600", | |
"model": { | |
"name": "xfeat", | |
"max_keypoints": 5000, | |
}, | |
"preprocessing": { | |
"grayscale": False, | |
"resize_max": 1600, | |
}, | |
}, | |
"alike": { | |
"output": "feats-alike-n5000-r1600", | |
"model": { | |
"name": "alike", | |
"max_keypoints": 5000, | |
"use_relu": True, | |
"multiscale": False, | |
"detection_threshold": 0.5, | |
"top_k": -1, | |
"sub_pixel": False, | |
}, | |
"preprocessing": { | |
"grayscale": False, | |
"resize_max": 1600, | |
}, | |
}, | |
"lanet": { | |
"output": "feats-lanet-n5000-r1600", | |
"model": { | |
"name": "lanet", | |
"keypoint_threshold": 0.1, | |
"max_keypoints": 5000, | |
}, | |
"preprocessing": { | |
"grayscale": False, | |
"resize_max": 1600, | |
}, | |
}, | |
"darkfeat": { | |
"output": "feats-darkfeat-n5000-r1600", | |
"model": { | |
"name": "darkfeat", | |
"max_keypoints": 5000, | |
"reliability_threshold": 0.7, | |
"repetability_threshold": 0.7, | |
}, | |
"preprocessing": { | |
"grayscale": False, | |
"force_resize": True, | |
"resize_max": 1600, | |
"width": 640, | |
"height": 480, | |
"dfactor": 8, | |
}, | |
}, | |
"dedode": { | |
"output": "feats-dedode-n5000-r1600", | |
"model": { | |
"name": "dedode", | |
"max_keypoints": 5000, | |
}, | |
"preprocessing": { | |
"grayscale": False, | |
"force_resize": True, | |
"resize_max": 1600, | |
"width": 768, | |
"height": 768, | |
"dfactor": 8, | |
}, | |
}, | |
"example": { | |
"output": "feats-example-n2000-r1024", | |
"model": { | |
"name": "example", | |
"keypoint_threshold": 0.1, | |
"max_keypoints": 2000, | |
"model_name": "model.pth", | |
}, | |
"preprocessing": { | |
"grayscale": False, | |
"force_resize": True, | |
"resize_max": 1024, | |
"width": 768, | |
"height": 768, | |
"dfactor": 8, | |
}, | |
}, | |
# Global descriptors | |
"dir": { | |
"output": "global-feats-dir", | |
"model": {"name": "dir"}, | |
"preprocessing": {"resize_max": 1024}, | |
}, | |
"netvlad": { | |
"output": "global-feats-netvlad", | |
"model": {"name": "netvlad"}, | |
"preprocessing": {"resize_max": 1024}, | |
}, | |
"openibl": { | |
"output": "global-feats-openibl", | |
"model": {"name": "openibl"}, | |
"preprocessing": {"resize_max": 1024}, | |
}, | |
"cosplace": { | |
"output": "global-feats-cosplace", | |
"model": {"name": "cosplace"}, | |
"preprocessing": {"resize_max": 1024}, | |
}, | |
} | |
def resize_image(image, size, interp): | |
if interp.startswith("cv2_"): | |
interp = getattr(cv2, "INTER_" + interp[len("cv2_") :].upper()) | |
h, w = image.shape[:2] | |
if interp == cv2.INTER_AREA and (w < size[0] or h < size[1]): | |
interp = cv2.INTER_LINEAR | |
resized = cv2.resize(image, size, interpolation=interp) | |
elif interp.startswith("pil_"): | |
interp = getattr(PIL.Image, interp[len("pil_") :].upper()) | |
resized = PIL.Image.fromarray(image.astype(np.uint8)) | |
resized = resized.resize(size, resample=interp) | |
resized = np.asarray(resized, dtype=image.dtype) | |
else: | |
raise ValueError(f"Unknown interpolation {interp}.") | |
return resized | |
class ImageDataset(torch.utils.data.Dataset): | |
default_conf = { | |
"globs": ["*.jpg", "*.png", "*.jpeg", "*.JPG", "*.PNG"], | |
"grayscale": False, | |
"resize_max": None, | |
"force_resize": False, | |
"interpolation": "cv2_area", # pil_linear is more accurate but slower | |
} | |
def __init__(self, root, conf, paths=None): | |
self.conf = conf = SimpleNamespace(**{**self.default_conf, **conf}) | |
self.root = root | |
if paths is None: | |
paths = [] | |
for g in conf.globs: | |
paths += list(Path(root).glob("**/" + g)) | |
if len(paths) == 0: | |
raise ValueError(f"Could not find any image in root: {root}.") | |
paths = sorted(list(set(paths))) | |
self.names = [i.relative_to(root).as_posix() for i in paths] | |
logger.info(f"Found {len(self.names)} images in root {root}.") | |
else: | |
if isinstance(paths, (Path, str)): | |
self.names = parse_image_lists(paths) | |
elif isinstance(paths, collections.Iterable): | |
self.names = [ | |
p.as_posix() if isinstance(p, Path) else p for p in paths | |
] | |
else: | |
raise ValueError(f"Unknown format for path argument {paths}.") | |
for name in self.names: | |
if not (root / name).exists(): | |
raise ValueError( | |
f"Image {name} does not exists in root: {root}." | |
) | |
def __getitem__(self, idx): | |
name = self.names[idx] | |
image = read_image(self.root / name, self.conf.grayscale) | |
image = image.astype(np.float32) | |
size = image.shape[:2][::-1] | |
if self.conf.resize_max and ( | |
self.conf.force_resize or max(size) > self.conf.resize_max | |
): | |
scale = self.conf.resize_max / max(size) | |
size_new = tuple(int(round(x * scale)) for x in size) | |
image = resize_image(image, size_new, self.conf.interpolation) | |
if self.conf.grayscale: | |
image = image[None] | |
else: | |
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW | |
image = image / 255.0 | |
data = { | |
"image": image, | |
"original_size": np.array(size), | |
} | |
return data | |
def __len__(self): | |
return len(self.names) | |
def extract(model, image_0, conf): | |
default_conf = { | |
"grayscale": True, | |
"resize_max": 1024, | |
"dfactor": 8, | |
"cache_images": False, | |
"force_resize": False, | |
"width": 320, | |
"height": 240, | |
"interpolation": "cv2_area", | |
} | |
conf = SimpleNamespace(**{**default_conf, **conf}) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def preprocess(image: np.ndarray, conf: SimpleNamespace): | |
image = image.astype(np.float32, copy=False) | |
size = image.shape[:2][::-1] | |
scale = np.array([1.0, 1.0]) | |
if conf.resize_max: | |
scale = conf.resize_max / max(size) | |
if scale < 1.0: | |
size_new = tuple(int(round(x * scale)) for x in size) | |
image = resize_image(image, size_new, "cv2_area") | |
scale = np.array(size) / np.array(size_new) | |
if conf.force_resize: | |
image = resize_image(image, (conf.width, conf.height), "cv2_area") | |
size_new = (conf.width, conf.height) | |
scale = np.array(size) / np.array(size_new) | |
if conf.grayscale: | |
assert image.ndim == 2, image.shape | |
image = image[None] | |
else: | |
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW | |
image = torch.from_numpy(image / 255.0).float() | |
# assure that the size is divisible by dfactor | |
size_new = tuple( | |
map( | |
lambda x: int(x // conf.dfactor * conf.dfactor), | |
image.shape[-2:], | |
) | |
) | |
image = F.resize(image, size=size_new, antialias=True) | |
input_ = image.to(device, non_blocking=True)[None] | |
data = { | |
"image": input_, | |
"image_orig": image_0, | |
"original_size": np.array(size), | |
"size": np.array(image.shape[1:][::-1]), | |
} | |
return data | |
# convert to grayscale if needed | |
if len(image_0.shape) == 3 and conf.grayscale: | |
image0 = cv2.cvtColor(image_0, cv2.COLOR_RGB2GRAY) | |
else: | |
image0 = image_0 | |
# comment following lines, image is always RGB mode | |
# if not conf.grayscale and len(image_0.shape) == 3: | |
# image0 = image_0[:, :, ::-1] # BGR to RGB | |
data = preprocess(image0, conf) | |
pred = model({"image": data["image"]}) | |
pred["image_size"] = original_size = data["original_size"] | |
pred = {**pred, **data} | |
return pred | |
def main( | |
conf: Dict, | |
image_dir: Path, | |
export_dir: Optional[Path] = None, | |
as_half: bool = True, | |
image_list: Optional[Union[Path, List[str]]] = None, | |
feature_path: Optional[Path] = None, | |
overwrite: bool = False, | |
) -> Path: | |
logger.info( | |
"Extracting local features with configuration:" | |
f"\n{pprint.pformat(conf)}" | |
) | |
dataset = ImageDataset(image_dir, conf["preprocessing"], image_list) | |
if feature_path is None: | |
feature_path = Path(export_dir, conf["output"] + ".h5") | |
feature_path.parent.mkdir(exist_ok=True, parents=True) | |
skip_names = set( | |
list_h5_names(feature_path) | |
if feature_path.exists() and not overwrite | |
else () | |
) | |
dataset.names = [n for n in dataset.names if n not in skip_names] | |
if len(dataset.names) == 0: | |
logger.info("Skipping the extraction.") | |
return feature_path | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
Model = dynamic_load(extractors, conf["model"]["name"]) | |
model = Model(conf["model"]).eval().to(device) | |
loader = torch.utils.data.DataLoader( | |
dataset, num_workers=1, shuffle=False, pin_memory=True | |
) | |
for idx, data in enumerate(tqdm(loader)): | |
name = dataset.names[idx] | |
pred = model({"image": data["image"].to(device, non_blocking=True)}) | |
pred = {k: v[0].cpu().numpy() for k, v in pred.items()} | |
pred["image_size"] = original_size = data["original_size"][0].numpy() | |
if "keypoints" in pred: | |
size = np.array(data["image"].shape[-2:][::-1]) | |
scales = (original_size / size).astype(np.float32) | |
pred["keypoints"] = (pred["keypoints"] + 0.5) * scales[None] - 0.5 | |
if "scales" in pred: | |
pred["scales"] *= scales.mean() | |
# add keypoint uncertainties scaled to the original resolution | |
uncertainty = getattr(model, "detection_noise", 1) * scales.mean() | |
if as_half: | |
for k in pred: | |
dt = pred[k].dtype | |
if (dt == np.float32) and (dt != np.float16): | |
pred[k] = pred[k].astype(np.float16) | |
with h5py.File(str(feature_path), "a", libver="latest") as fd: | |
try: | |
if name in fd: | |
del fd[name] | |
grp = fd.create_group(name) | |
for k, v in pred.items(): | |
grp.create_dataset(k, data=v) | |
if "keypoints" in pred: | |
grp["keypoints"].attrs["uncertainty"] = uncertainty | |
except OSError as error: | |
if "No space left on device" in error.args[0]: | |
logger.error( | |
"Out of disk space: storing features on disk can take " | |
"significant space, did you enable the as_half flag?" | |
) | |
del grp, fd[name] | |
raise error | |
del pred | |
logger.info("Finished exporting features.") | |
return feature_path | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--image_dir", type=Path, required=True) | |
parser.add_argument("--export_dir", type=Path, required=True) | |
parser.add_argument( | |
"--conf", | |
type=str, | |
default="superpoint_aachen", | |
choices=list(confs.keys()), | |
) | |
parser.add_argument("--as_half", action="store_true") | |
parser.add_argument("--image_list", type=Path) | |
parser.add_argument("--feature_path", type=Path) | |
args = parser.parse_args() | |
main(confs[args.conf], args.image_dir, args.export_dir, args.as_half) | |