Spaces:
Sleeping
Sleeping
import sys | |
from pathlib import Path | |
import torch | |
from ..utils.base_model import BaseModel | |
sys.path.append(str(Path(__file__).parent / "../../third_party")) | |
from TopicFM.src import get_model_cfg | |
from TopicFM.src.models.topic_fm import TopicFM as _TopicFM | |
topicfm_path = Path(__file__).parent / "../../third_party/TopicFM" | |
class TopicFM(BaseModel): | |
default_conf = { | |
"weights": "outdoor", | |
"match_threshold": 0.2, | |
"n_sampling_topics": 4, | |
"max_keypoints": -1, | |
} | |
required_inputs = ["image0", "image1"] | |
def _init(self, conf): | |
_conf = dict(get_model_cfg()) | |
_conf["match_coarse"]["thr"] = conf["match_threshold"] | |
_conf["coarse"]["n_samples"] = conf["n_sampling_topics"] | |
weight_path = topicfm_path / "pretrained/model_best.ckpt" | |
self.net = _TopicFM(config=_conf) | |
ckpt_dict = torch.load(weight_path, map_location="cpu") | |
self.net.load_state_dict(ckpt_dict["state_dict"]) | |
def _forward(self, data): | |
data_ = { | |
"image0": data["image0"], | |
"image1": data["image1"], | |
} | |
self.net(data_) | |
pred = { | |
"keypoints0": data_["mkpts0_f"], | |
"keypoints1": data_["mkpts1_f"], | |
"mconf": data_["mconf"], | |
} | |
scores = data_["mconf"] | |
top_k = self.conf["max_keypoints"] | |
if top_k is not None and len(scores) > top_k: | |
keep = torch.argsort(scores, descending=True)[:top_k] | |
scores = scores[keep] | |
pred["keypoints0"], pred["keypoints1"], pred["mconf"] = ( | |
pred["keypoints0"][keep], | |
pred["keypoints1"][keep], | |
scores, | |
) | |
return pred | |