Spaces:
Sleeping
Sleeping
import torch | |
def warp_kpts(kpts0, depth0, depth1, T_0to1, K0, K1): | |
""" Warp kpts0 from I0 to I1 with depth, K and Rt | |
Also check covisibility and depth consistency. | |
Depth is consistent if relative error < 0.2 (hard-coded). | |
Args: | |
kpts0 (torch.Tensor): [N, L, 2] - <x, y>, | |
depth0 (torch.Tensor): [N, H, W], | |
depth1 (torch.Tensor): [N, H, W], | |
T_0to1 (torch.Tensor): [N, 3, 4], | |
K0 (torch.Tensor): [N, 3, 3], | |
K1 (torch.Tensor): [N, 3, 3], | |
Returns: | |
calculable_mask (torch.Tensor): [N, L] | |
warped_keypoints0 (torch.Tensor): [N, L, 2] <x0_hat, y1_hat> | |
""" | |
kpts0_long = kpts0.round().long() | |
# Sample depth, get calculable_mask on depth != 0 | |
kpts0_depth = torch.stack( | |
[depth0[i, kpts0_long[i, :, 1], kpts0_long[i, :, 0]] for i in range(kpts0.shape[0])], dim=0 | |
) # (N, L) | |
nonzero_mask = kpts0_depth != 0 | |
# Unproject | |
kpts0_h = torch.cat([kpts0, torch.ones_like(kpts0[:, :, [0]])], dim=-1) * kpts0_depth[..., None] # (N, L, 3) | |
kpts0_cam = K0.inverse() @ kpts0_h.transpose(2, 1) # (N, 3, L) | |
# Rigid Transform | |
w_kpts0_cam = T_0to1[:, :3, :3] @ kpts0_cam + T_0to1[:, :3, [3]] # (N, 3, L) | |
w_kpts0_depth_computed = w_kpts0_cam[:, 2, :] | |
# Project | |
w_kpts0_h = (K1 @ w_kpts0_cam).transpose(2, 1) # (N, L, 3) | |
w_kpts0 = w_kpts0_h[:, :, :2] / (w_kpts0_h[:, :, [2]] + 1e-4) # (N, L, 2), +1e-4 to avoid zero depth | |
# Covisible Check | |
h, w = depth1.shape[1:3] | |
covisible_mask = (w_kpts0[:, :, 0] > 0) * (w_kpts0[:, :, 0] < w-1) * \ | |
(w_kpts0[:, :, 1] > 0) * (w_kpts0[:, :, 1] < h-1) | |
w_kpts0_long = w_kpts0.long() | |
w_kpts0_long[~covisible_mask, :] = 0 | |
w_kpts0_depth = torch.stack( | |
[depth1[i, w_kpts0_long[i, :, 1], w_kpts0_long[i, :, 0]] for i in range(w_kpts0_long.shape[0])], dim=0 | |
) # (N, L) | |
consistent_mask = ((w_kpts0_depth - w_kpts0_depth_computed) / w_kpts0_depth).abs() < 0.2 | |
valid_mask = nonzero_mask * covisible_mask * consistent_mask | |
return valid_mask, w_kpts0 | |