Realcat
add: efficientloftr
e02ffe6
import torch
@torch.no_grad()
def warp_kpts(kpts0, depth0, depth1, T_0to1, K0, K1):
""" Warp kpts0 from I0 to I1 with depth, K and Rt
Also check covisibility and depth consistency.
Depth is consistent if relative error < 0.2 (hard-coded).
Args:
kpts0 (torch.Tensor): [N, L, 2] - <x, y>,
depth0 (torch.Tensor): [N, H, W],
depth1 (torch.Tensor): [N, H, W],
T_0to1 (torch.Tensor): [N, 3, 4],
K0 (torch.Tensor): [N, 3, 3],
K1 (torch.Tensor): [N, 3, 3],
Returns:
calculable_mask (torch.Tensor): [N, L]
warped_keypoints0 (torch.Tensor): [N, L, 2] <x0_hat, y1_hat>
"""
kpts0_long = kpts0.round().long()
# Sample depth, get calculable_mask on depth != 0
kpts0_depth = torch.stack(
[depth0[i, kpts0_long[i, :, 1], kpts0_long[i, :, 0]] for i in range(kpts0.shape[0])], dim=0
) # (N, L)
nonzero_mask = kpts0_depth != 0
# Unproject
kpts0_h = torch.cat([kpts0, torch.ones_like(kpts0[:, :, [0]])], dim=-1) * kpts0_depth[..., None] # (N, L, 3)
kpts0_cam = K0.inverse() @ kpts0_h.transpose(2, 1) # (N, 3, L)
# Rigid Transform
w_kpts0_cam = T_0to1[:, :3, :3] @ kpts0_cam + T_0to1[:, :3, [3]] # (N, 3, L)
w_kpts0_depth_computed = w_kpts0_cam[:, 2, :]
# Project
w_kpts0_h = (K1 @ w_kpts0_cam).transpose(2, 1) # (N, L, 3)
w_kpts0 = w_kpts0_h[:, :, :2] / (w_kpts0_h[:, :, [2]] + 1e-4) # (N, L, 2), +1e-4 to avoid zero depth
# Covisible Check
h, w = depth1.shape[1:3]
covisible_mask = (w_kpts0[:, :, 0] > 0) * (w_kpts0[:, :, 0] < w-1) * \
(w_kpts0[:, :, 1] > 0) * (w_kpts0[:, :, 1] < h-1)
w_kpts0_long = w_kpts0.long()
w_kpts0_long[~covisible_mask, :] = 0
w_kpts0_depth = torch.stack(
[depth1[i, w_kpts0_long[i, :, 1], w_kpts0_long[i, :, 0]] for i in range(w_kpts0_long.shape[0])], dim=0
) # (N, L)
consistent_mask = ((w_kpts0_depth - w_kpts0_depth_computed) / w_kpts0_depth).abs() < 0.2
valid_mask = nonzero_mask * covisible_mask * consistent_mask
return valid_mask, w_kpts0