Realcat
add: efficientloftr
e02ffe6
"""
Convenience classes for an SE3 pose and a pinhole Camera with lens distortion.
Based on PyTorch tensors: differentiable, batched, with GPU support.
Modified from: https://github.com/cvg/glue-factory/blob/scannet1500/gluefactory/geometry/wrappers.py
"""
import functools
import inspect
import math
from typing import Dict, List, NamedTuple, Optional, Tuple, Union
import numpy as np
import torch
from .warppers_utils import (
J_distort_points,
distort_points,
skew_symmetric,
so3exp_map,
to_homogeneous,
)
def autocast(func):
"""Cast the inputs of a TensorWrapper method to PyTorch tensors
if they are numpy arrays. Use the device and dtype of the wrapper.
"""
@functools.wraps(func)
def wrap(self, *args):
device = torch.device("cpu")
dtype = None
if isinstance(self, TensorWrapper):
if self._data is not None:
device = self.device
dtype = self.dtype
elif not inspect.isclass(self) or not issubclass(self, TensorWrapper):
raise ValueError(self)
cast_args = []
for arg in args:
if isinstance(arg, np.ndarray):
arg = torch.from_numpy(arg)
arg = arg.to(device=device, dtype=dtype)
cast_args.append(arg)
return func(self, *cast_args)
return wrap
class TensorWrapper:
_data = None
@autocast
def __init__(self, data: torch.Tensor):
self._data = data
@property
def shape(self):
return self._data.shape[:-1]
@property
def device(self):
return self._data.device
@property
def dtype(self):
return self._data.dtype
def __getitem__(self, index):
return self.__class__(self._data[index])
def __setitem__(self, index, item):
self._data[index] = item.data
def to(self, *args, **kwargs):
return self.__class__(self._data.to(*args, **kwargs))
def cpu(self):
return self.__class__(self._data.cpu())
def cuda(self):
return self.__class__(self._data.cuda())
def pin_memory(self):
return self.__class__(self._data.pin_memory())
def float(self):
return self.__class__(self._data.float())
def double(self):
return self.__class__(self._data.double())
def detach(self):
return self.__class__(self._data.detach())
@classmethod
def stack(cls, objects: List, dim=0, *, out=None):
data = torch.stack([obj._data for obj in objects], dim=dim, out=out)
return cls(data)
@classmethod
def __torch_function__(self, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
if func is torch.stack:
return self.stack(*args, **kwargs)
else:
return NotImplemented
class Pose(TensorWrapper):
def __init__(self, data: torch.Tensor):
assert data.shape[-1] == 12
super().__init__(data)
@classmethod
@autocast
def from_Rt(cls, R: torch.Tensor, t: torch.Tensor):
"""Pose from a rotation matrix and translation vector.
Accepts numpy arrays or PyTorch tensors.
Args:
R: rotation matrix with shape (..., 3, 3).
t: translation vector with shape (..., 3).
"""
assert R.shape[-2:] == (3, 3)
assert t.shape[-1] == 3
assert R.shape[:-2] == t.shape[:-1]
data = torch.cat([R.flatten(start_dim=-2), t], -1)
return cls(data)
@classmethod
@autocast
def from_aa(cls, aa: torch.Tensor, t: torch.Tensor):
"""Pose from an axis-angle rotation vector and translation vector.
Accepts numpy arrays or PyTorch tensors.
Args:
aa: axis-angle rotation vector with shape (..., 3).
t: translation vector with shape (..., 3).
"""
assert aa.shape[-1] == 3
assert t.shape[-1] == 3
assert aa.shape[:-1] == t.shape[:-1]
return cls.from_Rt(so3exp_map(aa), t)
@classmethod
def from_4x4mat(cls, T: torch.Tensor):
"""Pose from an SE(3) transformation matrix.
Args:
T: transformation matrix with shape (..., 4, 4).
"""
assert T.shape[-2:] == (4, 4)
R, t = T[..., :3, :3], T[..., :3, 3]
return cls.from_Rt(R, t)
@classmethod
def from_colmap(cls, image: NamedTuple):
"""Pose from a COLMAP Image."""
return cls.from_Rt(image.qvec2rotmat(), image.tvec)
@property
def R(self) -> torch.Tensor:
"""Underlying rotation matrix with shape (..., 3, 3)."""
rvec = self._data[..., :9]
return rvec.reshape(rvec.shape[:-1] + (3, 3))
@property
def t(self) -> torch.Tensor:
"""Underlying translation vector with shape (..., 3)."""
return self._data[..., -3:]
def inv(self) -> "Pose":
"""Invert an SE(3) pose."""
R = self.R.transpose(-1, -2)
t = -(R @ self.t.unsqueeze(-1)).squeeze(-1)
return self.__class__.from_Rt(R, t)
def compose(self, other: "Pose") -> "Pose":
"""Chain two SE(3) poses: T_B2C.compose(T_A2B) -> T_A2C."""
R = self.R @ other.R
t = self.t + (self.R @ other.t.unsqueeze(-1)).squeeze(-1)
return self.__class__.from_Rt(R, t)
@autocast
def transform(self, p3d: torch.Tensor) -> torch.Tensor:
"""Transform a set of 3D points.
Args:
p3d: 3D points, numpy array or PyTorch tensor with shape (..., 3).
"""
assert p3d.shape[-1] == 3
# assert p3d.shape[:-2] == self.shape # allow broadcasting
return p3d @ self.R.transpose(-1, -2) + self.t.unsqueeze(-2)
def __mul__(self, p3D: torch.Tensor) -> torch.Tensor:
"""Transform a set of 3D points: T_A2B * p3D_A -> p3D_B."""
return self.transform(p3D)
def __matmul__(
self, other: Union["Pose", torch.Tensor]
) -> Union["Pose", torch.Tensor]:
"""Transform a set of 3D points: T_A2B * p3D_A -> p3D_B.
or chain two SE(3) poses: T_B2C @ T_A2B -> T_A2C."""
if isinstance(other, self.__class__):
return self.compose(other)
else:
return self.transform(other)
@autocast
def J_transform(self, p3d_out: torch.Tensor):
# [[1,0,0,0,-pz,py],
# [0,1,0,pz,0,-px],
# [0,0,1,-py,px,0]]
J_t = torch.diag_embed(torch.ones_like(p3d_out))
J_rot = -skew_symmetric(p3d_out)
J = torch.cat([J_t, J_rot], dim=-1)
return J # N x 3 x 6
def numpy(self) -> Tuple[np.ndarray]:
return self.R.numpy(), self.t.numpy()
def magnitude(self) -> Tuple[torch.Tensor]:
"""Magnitude of the SE(3) transformation.
Returns:
dr: rotation anngle in degrees.
dt: translation distance in meters.
"""
trace = torch.diagonal(self.R, dim1=-1, dim2=-2).sum(-1)
cos = torch.clamp((trace - 1) / 2, -1, 1)
dr = torch.acos(cos).abs() / math.pi * 180
dt = torch.norm(self.t, dim=-1)
return dr, dt
def __repr__(self):
return f"Pose: {self.shape} {self.dtype} {self.device}"
class Camera(TensorWrapper):
eps = 1e-4
def __init__(self, data: torch.Tensor):
assert data.shape[-1] in {6, 8, 10}
super().__init__(data)
@classmethod
def from_colmap(cls, camera: Union[Dict, NamedTuple]):
"""Camera from a COLMAP Camera tuple or dictionary.
We use the corner-convetion from COLMAP (center of top left pixel is (0.5, 0.5))
"""
if isinstance(camera, tuple):
camera = camera._asdict()
model = camera["model"]
params = camera["params"]
if model in ["OPENCV", "PINHOLE", "RADIAL"]:
(fx, fy, cx, cy), params = np.split(params, [4])
elif model in ["SIMPLE_PINHOLE", "SIMPLE_RADIAL"]:
(f, cx, cy), params = np.split(params, [3])
fx = fy = f
if model == "SIMPLE_RADIAL":
params = np.r_[params, 0.0]
else:
raise NotImplementedError(model)
data = np.r_[camera["width"], camera["height"], fx, fy, cx, cy, params]
return cls(data)
@classmethod
@autocast
def from_calibration_matrix(cls, K: torch.Tensor):
cx, cy = K[..., 0, 2], K[..., 1, 2]
fx, fy = K[..., 0, 0], K[..., 1, 1]
data = torch.stack([2 * cx, 2 * cy, fx, fy, cx, cy], -1)
return cls(data)
@autocast
def calibration_matrix(self):
K = torch.zeros(
*self._data.shape[:-1],
3,
3,
device=self._data.device,
dtype=self._data.dtype,
)
K[..., 0, 2] = self._data[..., 4]
K[..., 1, 2] = self._data[..., 5]
K[..., 0, 0] = self._data[..., 2]
K[..., 1, 1] = self._data[..., 3]
K[..., 2, 2] = 1.0
return K
@property
def size(self) -> torch.Tensor:
"""Size (width height) of the images, with shape (..., 2)."""
return self._data[..., :2]
@property
def f(self) -> torch.Tensor:
"""Focal lengths (fx, fy) with shape (..., 2)."""
return self._data[..., 2:4]
@property
def c(self) -> torch.Tensor:
"""Principal points (cx, cy) with shape (..., 2)."""
return self._data[..., 4:6]
@property
def dist(self) -> torch.Tensor:
"""Distortion parameters, with shape (..., {0, 2, 4})."""
return self._data[..., 6:]
@autocast
def scale(self, scales: torch.Tensor):
"""Update the camera parameters after resizing an image."""
s = scales
data = torch.cat([self.size * s, self.f * s, self.c * s, self.dist], -1)
return self.__class__(data)
def crop(self, left_top: Tuple[float], size: Tuple[int]):
"""Update the camera parameters after cropping an image."""
left_top = self._data.new_tensor(left_top)
size = self._data.new_tensor(size)
data = torch.cat([size, self.f, self.c - left_top, self.dist], -1)
return self.__class__(data)
@autocast
def in_image(self, p2d: torch.Tensor):
"""Check if 2D points are within the image boundaries."""
assert p2d.shape[-1] == 2
# assert p2d.shape[:-2] == self.shape # allow broadcasting
size = self.size.unsqueeze(-2)
valid = torch.all((p2d >= 0) & (p2d <= (size - 1)), -1)
return valid
@autocast
def project(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]:
"""Project 3D points into the camera plane and check for visibility."""
z = p3d[..., -1]
valid = z > self.eps
z = z.clamp(min=self.eps)
p2d = p3d[..., :-1] / z.unsqueeze(-1)
return p2d, valid
def J_project(self, p3d: torch.Tensor):
x, y, z = p3d[..., 0], p3d[..., 1], p3d[..., 2]
zero = torch.zeros_like(z)
z = z.clamp(min=self.eps)
J = torch.stack([1 / z, zero, -x / z**2, zero, 1 / z, -y / z**2], dim=-1)
J = J.reshape(p3d.shape[:-1] + (2, 3))
return J # N x 2 x 3
@autocast
def distort(self, pts: torch.Tensor) -> Tuple[torch.Tensor]:
"""Distort normalized 2D coordinates
and check for validity of the distortion model.
"""
assert pts.shape[-1] == 2
# assert pts.shape[:-2] == self.shape # allow broadcasting
return distort_points(pts, self.dist)
def J_distort(self, pts: torch.Tensor):
return J_distort_points(pts, self.dist) # N x 2 x 2
@autocast
def denormalize(self, p2d: torch.Tensor) -> torch.Tensor:
"""Convert normalized 2D coordinates into pixel coordinates."""
return p2d * self.f.unsqueeze(-2) + self.c.unsqueeze(-2)
@autocast
def normalize(self, p2d: torch.Tensor) -> torch.Tensor:
"""Convert normalized 2D coordinates into pixel coordinates."""
return (p2d - self.c.unsqueeze(-2)) / self.f.unsqueeze(-2)
def J_denormalize(self):
return torch.diag_embed(self.f).unsqueeze(-3) # 1 x 2 x 2
@autocast
def cam2image(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]:
"""Transform 3D points into 2D pixel coordinates."""
p2d, visible = self.project(p3d)
p2d, mask = self.distort(p2d)
p2d = self.denormalize(p2d)
valid = visible & mask & self.in_image(p2d)
return p2d, valid
def J_world2image(self, p3d: torch.Tensor):
p2d_dist, valid = self.project(p3d)
J = self.J_denormalize() @ self.J_distort(p2d_dist) @ self.J_project(p3d)
return J, valid
@autocast
def image2cam(self, p2d: torch.Tensor) -> torch.Tensor:
"""Convert 2D pixel corrdinates to 3D points with z=1"""
assert self._data.shape
p2d = self.normalize(p2d)
# iterative undistortion
return to_homogeneous(p2d)
def to_cameradict(self, camera_model: Optional[str] = None) -> List[Dict]:
data = self._data.clone()
if data.dim() == 1:
data = data.unsqueeze(0)
assert data.dim() == 2
b, d = data.shape
if camera_model is None:
camera_model = {6: "PINHOLE", 8: "RADIAL", 10: "OPENCV"}[d]
cameras = []
for i in range(b):
if camera_model.startswith("SIMPLE_"):
params = [x.item() for x in data[i, 3 : min(d, 7)]]
else:
params = [x.item() for x in data[i, 2:]]
cameras.append(
{
"model": camera_model,
"width": int(data[i, 0].item()),
"height": int(data[i, 1].item()),
"params": params,
}
)
return cameras if self._data.dim() == 2 else cameras[0]
def __repr__(self):
return f"Camera {self.shape} {self.dtype} {self.device}"