Vincentqyw
add: rord libs
2c8b554
import os
from sys import exit, argv
import csv
import random
import joblib
import numpy as np
import cv2
from PIL import Image
from tqdm import tqdm
import torch
from torch.utils.data import Dataset
from lib.utils import preprocess_image, grid_positions, upscale_positions
np.random.seed(0)
class PhotoTourismIPR(Dataset):
def __init__(self, base_path, preprocessing, train=True, cropSize=256):
self.base_path = base_path
self.train = train
self.preprocessing = preprocessing
self.valid_images = []
self.cropSize=cropSize
def getImageFiles(self):
img_files = []
img_path = "dense/images"
if self.train:
print("Inside training!!")
with open(os.path.join("configs", "train_scenes_small.txt")) as f:
scenes = f.read().strip("\n").split("\n")
print("[INFO]",scenes)
for scene in scenes:
image_dir = os.path.join(self.base_path, scene, img_path)
img_names = os.listdir(image_dir)
img_files += [os.path.join(image_dir, img) for img in img_names]
return img_files
def imgCrop(self, img1):
w, h = img1.size
left = np.random.randint(low = 0, high = w - (self.cropSize))
upper = np.random.randint(low = 0, high = h - (self.cropSize))
cropImg = img1.crop((left, upper, left+self.cropSize, upper+self.cropSize))
return cropImg
def getGrid(self, im1, im2, H, scaling_steps=3):
h1, w1 = int(im1.shape[0]/(2**scaling_steps)), int(im1.shape[1]/(2**scaling_steps))
device = torch.device("cpu")
fmap_pos1 = grid_positions(h1, w1, device)
pos1 = upscale_positions(fmap_pos1, scaling_steps=scaling_steps).data.cpu().numpy()
pos1[[0, 1]] = pos1[[1, 0]]
ones = np.ones((1, pos1.shape[1]))
pos1Homo = np.vstack((pos1, ones))
pos2Homo = np.dot(H, pos1Homo)
pos2Homo = pos2Homo/pos2Homo[2, :]
pos2 = pos2Homo[0:2, :]
pos1[[0, 1]] = pos1[[1, 0]]
pos2[[0, 1]] = pos2[[1, 0]]
pos1 = pos1.astype(np.float32)
pos2 = pos2.astype(np.float32)
ids = []
for i in range(pos2.shape[1]):
x, y = pos2[:, i]
if(2 < x < (im1.shape[0]-2) and 2 < y < (im1.shape[1]-2)):
ids.append(i)
pos1 = pos1[:, ids]
pos2 = pos2[:, ids]
return pos1, pos2
def imgRotH(self, img1, min=0, max=360):
width, height = img1.size
theta = np.random.randint(low=min, high=max) * (np.pi / 180)
Tx = width / 2
Ty = height / 2
sx = random.uniform(-1e-2, 1e-2)
sy = random.uniform(-1e-2, 1e-2)
p1 = random.uniform(-1e-4, 1e-4)
p2 = random.uniform(-1e-4, 1e-4)
alpha = np.cos(theta)
beta = np.sin(theta)
He = np.matrix([[alpha, beta, Tx * (1 - alpha) - Ty * beta], [-beta, alpha, beta * Tx + (1 - alpha) * Ty], [0, 0, 1]])
Ha = np.matrix([[1, sy, 0], [sx, 1, 0], [0, 0, 1]])
Hp = np.matrix([[1, 0, 0], [0, 1, 0], [p1, p2, 1]])
H = He @ Ha @ Hp
return H, theta
def build_dataset(self):
print("Building Dataset.")
imgFiles = self.getImageFiles()
for idx in tqdm(range(len(imgFiles))):
img = imgFiles[idx]
img1 = Image.open(img)
if(img1.mode != 'RGB'):
img1 = img1.convert('RGB')
if(img1.size[0] < self.cropSize or img1.size[1] < self.cropSize):
continue
self.valid_images.append(img)
def __len__(self):
return len(self.valid_images)
def __getitem__(self, idx):
while 1:
try:
img = self.valid_images[idx]
img1 = Image.open(img)
img1 = self.imgCrop(img1)
width, height = img1.size
H, theta = self.imgRotH(img1, min=0, max=360)
img1 = np.array(img1)
img2 = cv2.warpPerspective(img1, H, dsize=(width,height))
img2 = np.array(img2)
pos1, pos2 = self.getGrid(img1, img2, H)
assert (len(pos1) != 0 and len(pos2) != 0)
break
except IndexError:
print("IndexError")
exit(1)
except:
del self.valid_images[idx]
img1 = preprocess_image(img1, preprocessing=self.preprocessing)
img2 = preprocess_image(img2, preprocessing=self.preprocessing)
return {
'image1': torch.from_numpy(img1.astype(np.float32)),
'image2': torch.from_numpy(img2.astype(np.float32)),
'pos1': torch.from_numpy(pos1.astype(np.float32)),
'pos2': torch.from_numpy(pos2.astype(np.float32)),
'H': np.array(H),
'theta': np.array([theta])
}
if __name__ == '__main__':
rootDir = argv[1]
training_dataset = PhotoTourismIPR(rootDir, 'caffe')
training_dataset.build_dataset()
data = training_dataset[0]
print(data['image1'].shape, data['image2'].shape, data['pos1'].shape, data['pos2'].shape, len(training_dataset))