Spaces:
Sleeping
Sleeping
import os | |
import time | |
from tqdm import tqdm | |
import h5py | |
import numpy as np | |
from PIL import Image | |
import torch | |
from torch.utils.data import Dataset | |
from lib.utils import preprocess_image | |
import joblib | |
class PhotoTourism(Dataset): | |
def __init__( | |
self, | |
#scene_list_path='megadepth_utils/train_scenes.txt', | |
# scene_info_path='/local/dataset/megadepth/scene_info', | |
base_path='/scratch/udit/phototourism', | |
train=True, | |
preprocessing=None, | |
min_overlap_ratio=.5, | |
max_overlap_ratio=1, | |
max_scale_ratio=np.inf, | |
pairs_per_scene=500, | |
image_size=256 | |
): | |
if train: | |
scene_list_path = os.path.join(base_path, "train_scenes.txt.bkp") | |
else: | |
scene_list_path = os.path.join(base_path, "valid_scenes.txt") | |
self.scenes = [] | |
with open(scene_list_path, 'r') as f: | |
lines = f.readlines() | |
for line in lines: | |
self.scenes.append(line.strip('\n')) | |
# self.scene_info_path = scene_info_path | |
self.base_path = base_path | |
self.train = train | |
self.preprocessing = preprocessing | |
self.min_overlap_ratio = min_overlap_ratio | |
self.max_overlap_ratio = max_overlap_ratio | |
self.max_scale_ratio = max_scale_ratio | |
self.pairs_per_scene = pairs_per_scene | |
self.image_size = image_size | |
self.dataset = [] | |
def build_dataset(self): | |
cache_path = os.path.join(self.base_path, "orig_PT_2.gz") | |
if os.path.exists(cache_path): | |
self.dataset = joblib.load(cache_path) | |
return | |
self.dataset = [] | |
if not self.train: | |
np_random_state = np.random.get_state() | |
np.random.seed(42) | |
print('Building the validation dataset...') | |
else: | |
print('Building a new training dataset...') | |
for scene in tqdm(self.scenes, total=len(self.scenes)): | |
scene_info_path = os.path.join( | |
self.base_path, scene, '%s.npz' % scene | |
) | |
if not os.path.exists(scene_info_path): | |
continue | |
scene_info = np.load(scene_info_path, allow_pickle=True) | |
overlap_matrix = scene_info['overlap_matrix'] | |
scale_ratio_matrix = scene_info['scale_ratio_matrix'] | |
valid = np.logical_and( | |
np.logical_and( | |
overlap_matrix >= self.min_overlap_ratio, | |
overlap_matrix <= self.max_overlap_ratio | |
), | |
scale_ratio_matrix <= self.max_scale_ratio | |
) | |
pairs = np.vstack(np.where(valid)) | |
try: | |
selected_ids = np.random.choice( | |
pairs.shape[1], self.pairs_per_scene | |
) | |
except: | |
return | |
image_paths = scene_info['image_paths'] | |
depth_paths = scene_info['depth_paths'] | |
points3D_id_to_2D = scene_info['points3D_id_to_2D'] | |
points3D_id_to_ndepth = scene_info['points3D_id_to_ndepth'] | |
intrinsics = scene_info['intrinsics'] | |
poses = scene_info['poses'] | |
for pair_idx in selected_ids: | |
idx1 = pairs[0, pair_idx] | |
idx2 = pairs[1, pair_idx] | |
matches = np.array(list( | |
points3D_id_to_2D[idx1].keys() & | |
points3D_id_to_2D[idx2].keys() | |
)) | |
# Scale filtering | |
matches_nd1 = np.array([points3D_id_to_ndepth[idx1][match] for match in matches]) | |
matches_nd2 = np.array([points3D_id_to_ndepth[idx2][match] for match in matches]) | |
scale_ratio = np.maximum(matches_nd1 / matches_nd2, matches_nd2 / matches_nd1) | |
matches = matches[np.where(scale_ratio <= self.max_scale_ratio)[0]] | |
point3D_id = np.random.choice(matches) | |
point2D1 = points3D_id_to_2D[idx1][point3D_id] | |
point2D2 = points3D_id_to_2D[idx2][point3D_id] | |
nd1 = points3D_id_to_ndepth[idx1][point3D_id] | |
nd2 = points3D_id_to_ndepth[idx2][point3D_id] | |
central_match = np.array([ | |
point2D1[1], point2D1[0], | |
point2D2[1], point2D2[0] | |
]) | |
self.dataset.append({ | |
'image_path1': image_paths[idx1], | |
'depth_path1': depth_paths[idx1], | |
'intrinsics1': intrinsics[idx1], | |
'pose1': poses[idx1], | |
'image_path2': image_paths[idx2], | |
'depth_path2': depth_paths[idx2], | |
'intrinsics2': intrinsics[idx2], | |
'pose2': poses[idx2], | |
'central_match': central_match, | |
'scale_ratio': max(nd1 / nd2, nd2 / nd1) | |
}) | |
np.random.shuffle(self.dataset) | |
joblib.dump(self.dataset, cache_path, 3) | |
if not self.train: | |
np.random.set_state(np_random_state) | |
def __len__(self): | |
return len(self.dataset) | |
def recover_pair(self, pair_metadata): | |
depth_path1 = os.path.join( | |
self.base_path, pair_metadata['depth_path1'] | |
) | |
with h5py.File(depth_path1, 'r') as hdf5_file: | |
depth1 = np.array(hdf5_file['/depth']) | |
assert(np.min(depth1) >= 0) | |
image_path1 = os.path.join( | |
self.base_path, pair_metadata['image_path1'] | |
) | |
image1 = Image.open(image_path1) | |
if image1.mode != 'RGB': | |
image1 = image1.convert('RGB') | |
image1 = np.array(image1) | |
assert(image1.shape[0] == depth1.shape[0] and image1.shape[1] == depth1.shape[1]) | |
intrinsics1 = pair_metadata['intrinsics1'] | |
pose1 = pair_metadata['pose1'] | |
depth_path2 = os.path.join( | |
self.base_path, pair_metadata['depth_path2'] | |
) | |
with h5py.File(depth_path2, 'r') as hdf5_file: | |
depth2 = np.array(hdf5_file['/depth']) | |
assert(np.min(depth2) >= 0) | |
image_path2 = os.path.join( | |
self.base_path, pair_metadata['image_path2'] | |
) | |
image2 = Image.open(image_path2) | |
if image2.mode != 'RGB': | |
image2 = image2.convert('RGB') | |
image2 = np.array(image2) | |
assert(image2.shape[0] == depth2.shape[0] and image2.shape[1] == depth2.shape[1]) | |
intrinsics2 = pair_metadata['intrinsics2'] | |
pose2 = pair_metadata['pose2'] | |
central_match = pair_metadata['central_match'] | |
image1, bbox1, image2, bbox2 = self.crop(image1, image2, central_match) | |
depth1 = depth1[ | |
bbox1[0] : bbox1[0] + self.image_size, | |
bbox1[1] : bbox1[1] + self.image_size | |
] | |
depth2 = depth2[ | |
bbox2[0] : bbox2[0] + self.image_size, | |
bbox2[1] : bbox2[1] + self.image_size | |
] | |
return ( | |
image1, depth1, intrinsics1, pose1, bbox1, | |
image2, depth2, intrinsics2, pose2, bbox2 | |
) | |
def crop(self, image1, image2, central_match): | |
bbox1_i = max(int(central_match[0]) - self.image_size // 2, 0) | |
if bbox1_i + self.image_size >= image1.shape[0]: | |
bbox1_i = image1.shape[0] - self.image_size | |
bbox1_j = max(int(central_match[1]) - self.image_size // 2, 0) | |
if bbox1_j + self.image_size >= image1.shape[1]: | |
bbox1_j = image1.shape[1] - self.image_size | |
bbox2_i = max(int(central_match[2]) - self.image_size // 2, 0) | |
if bbox2_i + self.image_size >= image2.shape[0]: | |
bbox2_i = image2.shape[0] - self.image_size | |
bbox2_j = max(int(central_match[3]) - self.image_size // 2, 0) | |
if bbox2_j + self.image_size >= image2.shape[1]: | |
bbox2_j = image2.shape[1] - self.image_size | |
return ( | |
image1[ | |
bbox1_i : bbox1_i + self.image_size, | |
bbox1_j : bbox1_j + self.image_size | |
], | |
np.array([bbox1_i, bbox1_j]), | |
image2[ | |
bbox2_i : bbox2_i + self.image_size, | |
bbox2_j : bbox2_j + self.image_size | |
], | |
np.array([bbox2_i, bbox2_j]) | |
) | |
def __getitem__(self, idx): | |
while 1: | |
try: | |
( | |
image1, depth1, intrinsics1, pose1, bbox1, | |
image2, depth2, intrinsics2, pose2, bbox2 | |
) = self.recover_pair(self.dataset[idx]) | |
image1 = preprocess_image(image1, preprocessing=self.preprocessing) | |
image2 = preprocess_image(image2, preprocessing=self.preprocessing) | |
assert np.all(image1.shape==image2.shape) | |
break | |
except IndexError: | |
idx-=1 | |
except: | |
del self.dataset[idx] | |
return { | |
'image1': torch.from_numpy(image1.astype(np.float32)), | |
'depth1': torch.from_numpy(depth1.astype(np.float32)), | |
'intrinsics1': torch.from_numpy(intrinsics1.astype(np.float32)), | |
'pose1': torch.from_numpy(pose1.astype(np.float32)), | |
'bbox1': torch.from_numpy(bbox1.astype(np.float32)), | |
'image2': torch.from_numpy(image2.astype(np.float32)), | |
'depth2': torch.from_numpy(depth2.astype(np.float32)), | |
'intrinsics2': torch.from_numpy(intrinsics2.astype(np.float32)), | |
'pose2': torch.from_numpy(pose2.astype(np.float32)), | |
'bbox2': torch.from_numpy(bbox2.astype(np.float32)) | |
} | |