<p align="center"> <a href="README.md"><img src="https://img.shields.io/badge/English-white" alt='English'></a> <a href="README.zh-CN-simplified.md"><img src="https://img.shields.io/badge/%E4%B8%AD%E6%96%87-white" alt='Chinese'></a> </p> <h2 align="center">GIM: Learning Generalizable Image Matcher From Internet Videos</h2> <div align="center"> <a href="https://www.youtube.com/embed/FU_MJLD8LeY"> <img src="assets/demo/video.png" width="50%" alt="Overview Video"> </a> </div> <p></p> <div align="center"> <a href="https://iclr.cc/Conferences/2024"><img src="https://img.shields.io/badge/%F0%9F%8C%9F_ICLR'2024_Spotlight-37414c" alt='ICLR 2024 Spotlight'></a> <a href="https://xuelunshen.com/gim"><img src="https://img.shields.io/badge/Project_Page-3A464E?logo=gumtree" alt='Project Page'></a> <a href="https://arxiv.org/abs/2402.11095"><img src="https://img.shields.io/badge/arXiv-2402.11095-b31b1b?logo=arxiv" alt='arxiv'></a> <a href="https://huggingface.co/spaces/xuelunshen/gim-online"><img src="https://img.shields.io/badge/%F0%9F%A4%97_Hugging_Face-Space-F0CD4B?labelColor=666EEE" alt='HuggingFace Space'></a> <a href="https://www.youtube.com/watch?v=FU_MJLD8LeY"><img src="https://img.shields.io/badge/Overview_Video-E33122?logo=Youtube" alt='Overview Video'></a> ![GitHub Repo stars](https://img.shields.io/github/stars/xuelunshen/gim?style=social) <!-- <a href="https://xuelunshen.com/gim"><img src="https://img.shields.io/badge/π_Zero--shot_Image_Matching_Evaluation Benchmark-75BC66" alt='Zero-shot Evaluation Benchmark'></a> --> <!-- <a href="https://xuelunshen.com/gim"><img src="https://img.shields.io/badge/Source_Code-black?logo=Github" alt='Github Source Code'></a> --> <a href="https://en.xmu.edu.cn"><img src="https://img.shields.io/badge/Xiamen_University-183F9D?logo=Google%20Scholar&logoColor=white" alt='Intel'></a> <a href="https://www.intel.com"><img src="https://img.shields.io/badge/Labs-0071C5?logo=intel" alt='Intel'></a> <a href="https://www.dji.com"><img src="https://img.shields.io/badge/DJI-131313?logo=DJI" alt='Intel'></a> </div> | | <div align="left">Method</div> | <div align="left">Mean<br />AUC@5Β°<br />(%) β</div> | GL3 | BLE | ETI | ETO | KIT | WEA | SEA | NIG | MUL | SCE | ICL | GTA | | ---- | ------------------------------------------------------------ | --------------------------------------------------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | | | | Handcrafted | | | | | | | | | | | | | | | RootSIFT | 31.8 | 43.5 | 33.6 | 49.9 | 48.7 | 35.2 | 21.4 | 44.1 | 14.7 | 33.4 | 7.6 | 14.8 | 35.1 | | | | Sparse Matching | | | | | | | | | | | | | | | [SuperGlue](https://github.com/magicleap/SuperGluePretrainedNetwork) (in) | 21.6 | 19.2 | 16.0 | 38.2 | 37.7 | 22.0 | 20.8 | 40.8 | 13.7 | 21.4 | 0.8 | 9.6 | 18.8 | | | SuperGlue (out) | 31.2 | 29.7 | 24.2 | 52.3 | 59.3 | 28.0 | 28.4 | 48.0 | 20.9 | 33.4 | 4.5 | 16.6 | 29.3 | | | **GIM_SuperGlue**<br />(50h) | 34.3 | 43.2 | 34.2 | 58.7 | 61.0 | 29.0 | 28.3 | 48.4 | 18.8 | 34.8 | 2.8 | 15.4 | 36.5 | | | [LightGlue](https://github.com/cvg/LightGlue) | 31.7 | 28.9 | 23.9 | 51.6 | 56.3 | 32.1 | 29.5 | 48.9 | 22.2 | 37.4 | 3.0 | 16.2 | 30.4 | | β | **GIM_LightGlue**<br />(100h) | **38.3** | **46.6** | **38.1** | **61.7** | **62.9** | **34.9** | **31.2** | **50.6** | **22.6** | **41.8** | **6.9** | **19.0** | **43.4** | | | | Semi-dense Matching | | | | | | | | | | | | | | | [LoFTR](https://github.com/zju3dv/LoFTR) (in) | 10.7 | 5.6 | 5.1 | 11.8 | 7.5 | 17.2 | 6.4 | 9.7 | 3.5 | 22.4 | 1.3 | 14.9 | 23.4 | | | LoFTR (out) | 33.1 | 29.3 | 22.5 | 51.1 | 60.1 | **36.1** | **29.7** | **48.6** | **19.4** | 37.0 | **13.1** | 20.5 | 30.3 | | | **GIM_LoFTR**<br />(50h) | **39.1** | **50.6** | **43.9** | **62.6** | **61.6** | 35.9 | 26.8 | 47.5 | 17.6 | **41.4** | 10.2 | **25.6** | **45.0** | | π© | **GIM_LoFTR**<br />(100h) | ToDO | | | | | | | | | | | | | | | | Dense Matching | | | | | | | | | | | | | | | [DKM](https://github.com/Parskatt/DKM) (in) | 46.2 | 44.4 | 37.0 | 65.7 | 73.3 | 40.2 | 32.8 | 51.0 | 23.1 | 54.7 | 33.0 | **43.6** | 55.7 | | | DKM (out) | 45.8 | 45.7 | 37.0 | 66.8 | 75.8 | 41.7 | 33.5 | 51.4 | 22.9 | 56.3 | 27.3 | 37.8 | 52.9 | | | **GIM_DKM**<br />(50h) | 49.4 | 58.3 | 47.8 | 72.7 | 74.5 | 42.1 | **34.6** | 52.0 | **25.1** | 53.7 | 32.3 | 38.8 | 60.6 | | β | **GIM_DKM**<br />(100h) | **51.2** | **63.3** | **53.0** | **73.9** | 76.7 | **43.4** | **34.6** | **52.5** | 24.5 | 56.6 | 32.2 | 42.5 | **61.6** | | | [RoMa](https://github.com/Parskatt/RoMa) (in) | 46.7 | 46.0 | 39.3 | 68.8 | 77.2 | 36.5 | 31.1 | 50.4 | 20.8 | 57.8 | **33.8** | 41.7 | 57.6 | | | RoMa (out) | 48.8 | 48.3 | 40.6 | 73.6 | **79.8** | 39.9 | 34.4 | 51.4 | 24.2 | **59.9** | 33.7 | 41.3 | 59.2 | | π© | **GIM_RoMa** | ToDO | | | | | | | | | | | | | > The data in this table comes from the **ZEB**: <u>Zero-shot Evaluation Benchmark for Image Matching</u> proposed in the paper. This benchmark consists of 12 public datasets that cover a variety of scenes, weather conditions, and camera models, corresponding to the 12 test sequences starting from GL3 in the table. We will release **ZEB** as soon as possible. ## β TODO List - [ ] Inference code - [ ] gim_roma - [x] gim_dkm - [ ] gim_loftr - [x] gim_lightglue - [ ] Training code > We are actively continuing with the remaining open-source work and appreciate everyone's attention. ## π€ Online demo Go to [Huggingface](https://huggingface.co/spaces/xuelunshen/gim-online) to quickly try our model online. ## βοΈ Environment I set up the running environment on a new machine using the commands listed below. ```bash conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge pip install albumentations==1.0.1 --no-binary=imgaug,albumentations pip install pytorch-lightning==1.5.10 pip install opencv-python==4.5.3.56 pip install imagesize==1.2.0 pip install kornia==0.6.10 pip install einops==0.3.0 pip install loguru==0.5.3 pip install joblib==1.0.1 pip install yacs==0.1.8 pip install h5py==3.1.0 ``` ## π¨ Usage Clone the repository ```bash git clone https://github.com/xuelunshen/gim.git cd gim ``` Download `gim_dkm` model weight from [Google Drive](https://drive.google.com/file/d/1gk97V4IROnR1Nprq10W9NCFUv2mxXR_-/view?usp=sharing) Put it on the folder `weights` Run the following command ```bash python demo.py --model gim_dkm ``` or ```bash python demo.py --model gim_lightglue ``` The code will match `a1.png` and `a2.png` in the folder `assets/demo`</br>, and output `a1_a2_match.png` and `a1_a2_warp.png`. <details> <summary> Click to show <code>a1.png</code> and <code>a2.png</code>. </summary> <p float="left"> <img src="assets/demo/a1.png" width="25%" /> <img src="assets/demo/a2.png" width="25%" /> </p> </details> <details> <summary> Click to show <code>a1_a2_match.png</code>. </summary> <p align="left"> <img src="assets/demo/_a1_a2_match.png" width="50%"> </p> <p><code>a1_a2_match.png</code> is a visualization of the match between the two images</p> </details> <details> <summary> Click to show <code>a1_a2_warp.png</code>. </summary> <p align="left"> <img src="assets/demo/_a1_a2_warp.png" width="50%"> </p> <p><code>a1_a2_warp.png</code> shows the effect of projecting <code>image a2</code> onto <code>image a1</code> using homography</p> </details> There are more images in the `assets/demo` folder, you can try them out. <details> <summary> Click to show other images. </summary> <p float="left"> <img src="assets/demo/b1.png" width="15%" /> <img src="assets/demo/b2.png" width="15%" /> <img src="assets/demo/c1.png" width="15%" /> <img src="assets/demo/c2.png" width="15%" /> <img src="assets/demo/d1.png" width="15%" /> <img src="assets/demo/d2.png" width="15%" /> </p> </details> ## π Citation If the paper and code from `gim` help your research, we kindly ask you to give a citation to our paper β€οΈ. Additionally, if you appreciate our work and find this repository useful, giving it a star βοΈ would be a wonderful way to support our work. Thank you very much. ```bibtex @inproceedings{ xuelun2024gim, title={GIM: Learning Generalizable Image Matcher From Internet Videos}, author={Xuelun Shen and Zhipeng Cai and Wei Yin and Matthias MΓΌller and Zijun Li and Kaixuan Wang and Xiaozhi Chen and Cheng Wang}, booktitle={The Twelfth International Conference on Learning Representations}, year={2024} } ``` ## π Star History <a href="https://star-history.com/#xuelunshen/gim&Date"> <picture> <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=xuelunshen/gim&type=Date&theme=dark" /> <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=xuelunshen/gim&type=Date" /> <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=xuelunshen/gim&type=Date" /> </picture> </a> ## License This repository is under the MIT License. This content/model is provided here for research purposes only. Any use beyond this is your sole responsibility and subject to your securing the necessary rights for your purpose.