Spaces:
Running
Running
File size: 12,839 Bytes
79e3682 0e65629 ffe544f 79e3682 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import gradio as gr
import vtracer
import os
import pandas as pd
from io import BytesIO
from PIL import Image
import cairosvg
import cv2
import numpy as np
import tempfile
def clean_svg(svg_string):
"""Optional function to clean SVG if needed"""
return svg_string
def rasterize_svg(svg_string, width, height, dpi=128, scale=1):
"""Convert SVG string to PNG image while maintaining aspect ratio"""
try:
svg_raster_bytes = cairosvg.svg2png(
bytestring=svg_string,
background_color='white',
output_width=width,
output_height=height,
dpi=dpi,
scale=scale)
svg_raster = Image.open(BytesIO(svg_raster_bytes))
except:
try:
svg = clean_svg(svg_string)
svg_raster_bytes = cairosvg.svg2png(
bytestring=svg,
background_color='white',
output_width=width,
output_height=height,
dpi=dpi,
scale=scale)
svg_raster = Image.open(BytesIO(svg_raster_bytes))
except:
svg_raster = Image.new('RGB', (width, height), color='white')
return svg_raster
def create_video_from_frames(frame_files, output_path, duration_seconds, width, height):
"""Create video from sequence of frames with specified duration"""
# Calculate frame rate based on desired duration
num_frames = len(frame_files)
fps = max(1, num_frames / duration_seconds) # Ensure at least 1 fps
# Initialize video writer
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
# Read each frame and write to video
for frame_file in frame_files:
# Read image with PIL and convert to OpenCV format
pil_img = Image.open(frame_file)
cv_img = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
video.write(cv_img)
# Add last frame to fill remaining time if needed
if num_frames > 0:
remaining_frames = max(0, int(fps * duration_seconds) - num_frames)
for _ in range(remaining_frames):
video.write(cv_img)
video.release()
def process_svg_to_video(input_svg_path, original_width, original_height, video_duration_seconds=10, chunk_size=30):
"""Process SVG file and create a video with specified duration using exponential row slicing"""
# Read SVG file as a table to maintain exact row slicing logic
df = pd.read_table(input_svg_path, header=None)
df_head = df.head(3)
df_tail = df.tail(1)
df_middle = df.iloc[3:-1, :]
# Use the original image dimensions
width, height = original_width, original_height
# If chunk_size is 0, use automatic calculation (start with 1)
total_rows = len(df_middle)
if chunk_size == 0:
initial_chunk = 1 # Start with 1 path element
else:
initial_chunk = max(1, min(chunk_size, total_rows)) # Ensure it's within valid range
# Create a temporary directory for images
temp_dir = tempfile.mkdtemp()
frame_files = []
# Process with exponential chunk sizes
current_chunk_size = initial_chunk
processed_rows = 0
while processed_rows < total_rows:
# Calculate end index for this chunk
end_idx = min(processed_rows + current_chunk_size, total_rows)
current_chunk = df_middle.iloc[:end_idx]
# Combine with head and tail
combined_df = pd.concat([df_head, current_chunk, df_tail])
svg_content = "\n".join(combined_df[0].astype(str).values.tolist())
# Convert to image using original dimensions
img = rasterize_svg(svg_content, width, height)
img_filename = os.path.join(temp_dir, f"frame_{processed_rows:04d}.png")
img.save(img_filename)
frame_files.append(img_filename)
# Update counters
processed_rows = end_idx
current_chunk_size *= 2 # Double the chunk size for next iteration
# Create output video path
output_video_path = os.path.join(temp_dir, "output_video.mp4")
# Create video from frames
create_video_from_frames(frame_files, output_video_path, video_duration_seconds, width, height)
# Clean up temporary files (except the video)
for file in frame_files:
os.remove(file)
return output_video_path, temp_dir
def convert_to_vector_and_video(
image,
video_duration=10,
chunk_size=30,
colormode="color",
hierarchical="stacked",
mode="spline",
filter_speckle=4,
color_precision=6,
layer_difference=16,
corner_threshold=60,
length_threshold=4.0,
max_iterations=10,
splice_threshold=45,
path_precision=3
):
# Create temporary directory
temp_dir = tempfile.mkdtemp()
input_path = os.path.join(temp_dir, "temp_input.jpg")
output_svg_path = os.path.join(temp_dir, "svg_output.svg")
# Save the input image to a temporary file
image.save(input_path)
# Get original dimensions from the uploaded image
original_width, original_height = image.size
# Convert the image to SVG using VTracer
vtracer.convert_image_to_svg_py(
input_path,
output_svg_path,
colormode=colormode,
hierarchical=hierarchical,
mode=mode,
filter_speckle=int(filter_speckle),
color_precision=int(color_precision),
layer_difference=int(layer_difference),
corner_threshold=int(corner_threshold),
length_threshold=float(length_threshold),
max_iterations=int(max_iterations),
splice_threshold=int(splice_threshold),
path_precision=int(path_precision)
)
# Process SVG to create video using the original dimensions
video_path, video_temp_dir = process_svg_to_video(
output_svg_path,
original_width,
original_height,
video_duration_seconds=video_duration,
chunk_size=chunk_size
)
# Read the SVG output
with open(output_svg_path, "r") as f:
svg_content = f.read()
# Return the SVG preview, SVG file, and video file
return (
gr.HTML(f'<svg viewBox="0 0 {original_width} {original_height}">{svg_content}</svg>'),
output_svg_path,
video_path
)
def handle_color_mode(value):
return value
def clear_inputs():
return (
gr.Image(value=None),
gr.Slider(value=10),
gr.Slider(value=30),
gr.Radio(value="color"),
gr.Radio(value="stacked"),
gr.Radio(value="spline"),
gr.Slider(value=4),
gr.Slider(value=6),
gr.Slider(value=16),
gr.Slider(value=60),
gr.Slider(value=4.0),
gr.Slider(value=10),
gr.Slider(value=45),
gr.Slider(value=3)
)
def update_interactivity_and_visibility(colormode, color_precision_value, layer_difference_value):
is_color_mode = colormode == "color"
return (
gr.update(interactive=is_color_mode),
gr.update(interactive=is_color_mode),
gr.update(visible=is_color_mode)
)
def update_interactivity_and_visibility_for_mode(mode):
is_spline_mode = mode == "spline"
return (
gr.update(interactive=is_spline_mode),
gr.update(interactive=is_spline_mode),
gr.update(interactive=is_spline_mode)
)
css = """
#col-container {
margin: 0 auto;
max-width: 960px;
}
.generate-btn {
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
border: none !important;
color: white !important;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
"""
examples = [
"examples/玉子.jpg",
"examples/异闻录.jpg",
"examples/化物语封面.jpeg",
"examples/01.jpg",
"examples/02.jpg",
"examples/03.jpg",
]
# Define the Gradio interface
with gr.Blocks(css=css) as app:
with gr.Column(elem_id="col-container"):
gr.HTML("""
<div style="text-align: center;">
<h2>Image to Vector Video Converter ⚡</h2>
<p>Converts raster images to vector graphics and creates progressive rendering videos.</p>
</div>
""")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Upload Image")
video_duration = gr.Slider(1, 60, value=10, step=1, label="Video Duration (seconds)")
chunk_size = gr.Slider(0, 1000, value=300, step=1, label="Chunk Size (0=auto)",
info="Number of SVG path elements to add per frame (0 for automatic calculation)")
with gr.Accordion("Advanced Settings", open=False):
with gr.Accordion("Clustering", open=False):
colormode = gr.Radio([("COLOR","color"),("B/W", "binary")], value="color", label="Color Mode", show_label=False)
filter_speckle = gr.Slider(0, 128, value=4, step=1, label="Filter Speckle", info="Cleaner")
color_precision = gr.Slider(1, 8, value=6, step=1, label="Color Precision", info="More accurate")
layer_difference = gr.Slider(0, 128, value=16, step=1, label="Gradient Step", info="Less layers")
hierarchical = gr.Radio([("STACKED","stacked"), ("CUTOUT","cutout")], value="stacked", label="Hierarchical Mode",show_label=False)
with gr.Accordion("Curve Fitting", open=False):
mode = gr.Radio([("SPLINE","spline"),("POLYGON", "polygon"), ("PIXEL","none")], value="spline", label="Mode", show_label=False)
corner_threshold = gr.Slider(0, 180, value=60, step=1, label="Corner Threshold", info="Smoother")
length_threshold = gr.Slider(3.5, 10, value=4.0, step=0.1, label="Segment Length", info ="More coarse")
splice_threshold = gr.Slider(0, 180, value=45, step=1, label="Splice Threshold", info="Less accurate")
max_iterations = gr.Slider(1, 20, value=10, step=1, label="Max Iterations", visible=False)
path_precision = gr.Slider(1, 10, value=3, step=1, label="Path Precision", visible=False)
output_text = gr.Textbox(label="Selected Mode", visible=False)
with gr.Row():
clear_button = gr.Button("Clear")
convert_button = gr.Button("✨ Convert to Video", variant='primary', elem_classes=["generate-btn"])
with gr.Column():
html = gr.HTML(label="SVG Preview")
svg_output = gr.File(label="Download SVG")
video_output = gr.Video(label="Rendering Video")
gr.Examples(
examples=examples,
fn=convert_to_vector_and_video,
inputs=[image_input],
outputs=[html, svg_output, video_output],
cache_examples=False,
run_on_click=True
)
# Event handlers
colormode.change(handle_color_mode, inputs=colormode, outputs=output_text)
hierarchical.change(handle_color_mode, inputs=hierarchical, outputs=output_text)
mode.change(handle_color_mode, inputs=mode, outputs=output_text)
colormode.change(
update_interactivity_and_visibility,
inputs=[colormode, color_precision, layer_difference],
outputs=[color_precision, layer_difference, hierarchical]
)
mode.change(
update_interactivity_and_visibility_for_mode,
inputs=[mode],
outputs=[corner_threshold, length_threshold, splice_threshold]
)
clear_button.click(
clear_inputs,
outputs=[
image_input,
video_duration,
chunk_size,
colormode,
hierarchical,
mode,
filter_speckle,
color_precision,
layer_difference,
corner_threshold,
length_threshold,
max_iterations,
splice_threshold,
path_precision
]
)
convert_button.click(
convert_to_vector_and_video,
inputs=[
image_input,
video_duration,
chunk_size,
colormode,
hierarchical,
mode,
filter_speckle,
color_precision,
layer_difference,
corner_threshold,
length_threshold,
max_iterations,
splice_threshold,
path_precision
],
outputs=[html, svg_output, video_output]
)
# Launch the app
if __name__ == "__main__":
app.launch(share=True) |