Spaces:
Running
Running
import gradio as gr | |
import vtracer | |
import os | |
import pandas as pd | |
from io import BytesIO | |
from PIL import Image | |
import cairosvg | |
import cv2 | |
import numpy as np | |
import tempfile | |
def clean_svg(svg_string): | |
"""Optional function to clean SVG if needed""" | |
return svg_string | |
def rasterize_svg(svg_string, width, height, dpi=128, scale=1): | |
"""Convert SVG string to PNG image while maintaining aspect ratio""" | |
try: | |
svg_raster_bytes = cairosvg.svg2png( | |
bytestring=svg_string, | |
background_color='white', | |
output_width=width, | |
output_height=height, | |
dpi=dpi, | |
scale=scale) | |
svg_raster = Image.open(BytesIO(svg_raster_bytes)) | |
except: | |
try: | |
svg = clean_svg(svg_string) | |
svg_raster_bytes = cairosvg.svg2png( | |
bytestring=svg, | |
background_color='white', | |
output_width=width, | |
output_height=height, | |
dpi=dpi, | |
scale=scale) | |
svg_raster = Image.open(BytesIO(svg_raster_bytes)) | |
except: | |
svg_raster = Image.new('RGB', (width, height), color='white') | |
return svg_raster | |
def create_video_from_frames(frame_files, output_path, duration_seconds, width, height): | |
"""Create video from sequence of frames with specified duration""" | |
# Calculate frame rate based on desired duration | |
num_frames = len(frame_files) | |
fps = max(1, num_frames / duration_seconds) # Ensure at least 1 fps | |
# Initialize video writer | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
video = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) | |
# Read each frame and write to video | |
for frame_file in frame_files: | |
# Read image with PIL and convert to OpenCV format | |
pil_img = Image.open(frame_file) | |
cv_img = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR) | |
video.write(cv_img) | |
# Add last frame to fill remaining time if needed | |
if num_frames > 0: | |
remaining_frames = max(0, int(fps * duration_seconds) - num_frames) | |
for _ in range(remaining_frames): | |
video.write(cv_img) | |
video.release() | |
def process_svg_to_video(input_svg_path, original_width, original_height, video_duration_seconds=10, chunk_size=30): | |
"""Process SVG file and create a video with specified duration using exact row slicing""" | |
# Read SVG file as a table to maintain exact row slicing logic | |
df = pd.read_table(input_svg_path, header=None) | |
df_head = df.head(3) | |
df_tail = df.tail(1) | |
df_middle = df.iloc[3:-1, :] | |
# Use the original image dimensions | |
width, height = original_width, original_height | |
# If chunk_size is 0, use automatic calculation (total_rows // 30) | |
total_rows = len(df_middle) | |
if chunk_size == 0: | |
chunk_size = max(1, total_rows // 30) | |
else: | |
chunk_size = max(1, min(chunk_size, total_rows)) # Ensure it's within valid range | |
# Create a temporary directory for images | |
temp_dir = tempfile.mkdtemp() | |
frame_files = [] | |
# Process each chunk and save as image | |
for i in range(0, total_rows, chunk_size): | |
current_chunk = df_middle.iloc[:i+chunk_size] | |
# Combine with head and tail | |
combined_df = pd.concat([df_head, current_chunk, df_tail]) | |
svg_content = "\n".join(combined_df[0].astype(str).values.tolist()) | |
# Convert to image using original dimensions | |
img = rasterize_svg(svg_content, width, height) | |
img_filename = os.path.join(temp_dir, f"frame_{i:04d}.png") | |
img.save(img_filename) | |
frame_files.append(img_filename) | |
# Create output video path | |
output_video_path = os.path.join(temp_dir, "output_video.mp4") | |
# Create video from frames | |
create_video_from_frames(frame_files, output_video_path, video_duration_seconds, width, height) | |
# Clean up temporary files (except the video) | |
for file in frame_files: | |
os.remove(file) | |
return output_video_path, temp_dir | |
def convert_to_vector_and_video( | |
image, | |
video_duration=10, | |
chunk_size=30, | |
colormode="color", | |
hierarchical="stacked", | |
mode="spline", | |
filter_speckle=4, | |
color_precision=6, | |
layer_difference=16, | |
corner_threshold=60, | |
length_threshold=4.0, | |
max_iterations=10, | |
splice_threshold=45, | |
path_precision=3 | |
): | |
# Create temporary directory | |
temp_dir = tempfile.mkdtemp() | |
input_path = os.path.join(temp_dir, "temp_input.jpg") | |
output_svg_path = os.path.join(temp_dir, "svg_output.svg") | |
# Save the input image to a temporary file | |
image.save(input_path) | |
# Get original dimensions from the uploaded image | |
original_width, original_height = image.size | |
# Convert the image to SVG using VTracer | |
vtracer.convert_image_to_svg_py( | |
input_path, | |
output_svg_path, | |
colormode=colormode, | |
hierarchical=hierarchical, | |
mode=mode, | |
filter_speckle=int(filter_speckle), | |
color_precision=int(color_precision), | |
layer_difference=int(layer_difference), | |
corner_threshold=int(corner_threshold), | |
length_threshold=float(length_threshold), | |
max_iterations=int(max_iterations), | |
splice_threshold=int(splice_threshold), | |
path_precision=int(path_precision) | |
) | |
# Process SVG to create video using the original dimensions | |
video_path, video_temp_dir = process_svg_to_video( | |
output_svg_path, | |
original_width, | |
original_height, | |
video_duration_seconds=video_duration, | |
chunk_size=chunk_size | |
) | |
# Read the SVG output | |
with open(output_svg_path, "r") as f: | |
svg_content = f.read() | |
# Return the SVG preview, SVG file, and video file | |
return ( | |
gr.HTML(f'<svg viewBox="0 0 {original_width} {original_height}">{svg_content}</svg>'), | |
output_svg_path, | |
video_path | |
) | |
def handle_color_mode(value): | |
return value | |
def clear_inputs(): | |
return ( | |
gr.Image(value=None), | |
gr.Slider(value=10), | |
gr.Slider(value=30), | |
gr.Radio(value="color"), | |
gr.Radio(value="stacked"), | |
gr.Radio(value="spline"), | |
gr.Slider(value=4), | |
gr.Slider(value=6), | |
gr.Slider(value=16), | |
gr.Slider(value=60), | |
gr.Slider(value=4.0), | |
gr.Slider(value=10), | |
gr.Slider(value=45), | |
gr.Slider(value=3) | |
) | |
def update_interactivity_and_visibility(colormode, color_precision_value, layer_difference_value): | |
is_color_mode = colormode == "color" | |
return ( | |
gr.update(interactive=is_color_mode), | |
gr.update(interactive=is_color_mode), | |
gr.update(visible=is_color_mode) | |
) | |
def update_interactivity_and_visibility_for_mode(mode): | |
is_spline_mode = mode == "spline" | |
return ( | |
gr.update(interactive=is_spline_mode), | |
gr.update(interactive=is_spline_mode), | |
gr.update(interactive=is_spline_mode) | |
) | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 960px; | |
} | |
.generate-btn { | |
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important; | |
border: none !important; | |
color: white !important; | |
} | |
.generate-btn:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 5px 15px rgba(0,0,0,0.2); | |
} | |
""" | |
examples = [ | |
"examples/01.jpg", | |
"examples/02.jpg", | |
"examples/03.jpg", | |
] | |
# Define the Gradio interface | |
with gr.Blocks(css=css) as app: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(""" | |
<div style="text-align: center;"> | |
<h2>Image to Vector Video Converter ⚡</h2> | |
<p>Converts raster images to vector graphics and creates progressive rendering videos.</p> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="pil", label="Upload Image") | |
video_duration = gr.Slider(1, 60, value=10, step=1, label="Video Duration (seconds)") | |
chunk_size = gr.Slider(0, 1000, value=300, step=1, label="Chunk Size (0=auto)", | |
info="Number of SVG path elements to add per frame (0 for automatic calculation)") | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Accordion("Clustering", open=False): | |
colormode = gr.Radio([("COLOR","color"),("B/W", "binary")], value="color", label="Color Mode", show_label=False) | |
filter_speckle = gr.Slider(0, 128, value=4, step=1, label="Filter Speckle", info="Cleaner") | |
color_precision = gr.Slider(1, 8, value=6, step=1, label="Color Precision", info="More accurate") | |
layer_difference = gr.Slider(0, 128, value=16, step=1, label="Gradient Step", info="Less layers") | |
hierarchical = gr.Radio([("STACKED","stacked"), ("CUTOUT","cutout")], value="stacked", label="Hierarchical Mode",show_label=False) | |
with gr.Accordion("Curve Fitting", open=False): | |
mode = gr.Radio([("SPLINE","spline"),("POLYGON", "polygon"), ("PIXEL","none")], value="spline", label="Mode", show_label=False) | |
corner_threshold = gr.Slider(0, 180, value=60, step=1, label="Corner Threshold", info="Smoother") | |
length_threshold = gr.Slider(3.5, 10, value=4.0, step=0.1, label="Segment Length", info ="More coarse") | |
splice_threshold = gr.Slider(0, 180, value=45, step=1, label="Splice Threshold", info="Less accurate") | |
max_iterations = gr.Slider(1, 20, value=10, step=1, label="Max Iterations", visible=False) | |
path_precision = gr.Slider(1, 10, value=3, step=1, label="Path Precision", visible=False) | |
output_text = gr.Textbox(label="Selected Mode", visible=False) | |
with gr.Row(): | |
clear_button = gr.Button("Clear") | |
convert_button = gr.Button("✨ Convert to Video", variant='primary', elem_classes=["generate-btn"]) | |
with gr.Column(): | |
html = gr.HTML(label="SVG Preview") | |
svg_output = gr.File(label="Download SVG") | |
video_output = gr.Video(label="Rendering Video") | |
gr.Examples( | |
examples=examples, | |
fn=convert_to_vector_and_video, | |
inputs=[image_input], | |
outputs=[html, svg_output, video_output], | |
cache_examples=False, | |
run_on_click=True | |
) | |
# Event handlers | |
colormode.change(handle_color_mode, inputs=colormode, outputs=output_text) | |
hierarchical.change(handle_color_mode, inputs=hierarchical, outputs=output_text) | |
mode.change(handle_color_mode, inputs=mode, outputs=output_text) | |
colormode.change( | |
update_interactivity_and_visibility, | |
inputs=[colormode, color_precision, layer_difference], | |
outputs=[color_precision, layer_difference, hierarchical] | |
) | |
mode.change( | |
update_interactivity_and_visibility_for_mode, | |
inputs=[mode], | |
outputs=[corner_threshold, length_threshold, splice_threshold] | |
) | |
clear_button.click( | |
clear_inputs, | |
outputs=[ | |
image_input, | |
video_duration, | |
chunk_size, | |
colormode, | |
hierarchical, | |
mode, | |
filter_speckle, | |
color_precision, | |
layer_difference, | |
corner_threshold, | |
length_threshold, | |
max_iterations, | |
splice_threshold, | |
path_precision | |
] | |
) | |
convert_button.click( | |
convert_to_vector_and_video, | |
inputs=[ | |
image_input, | |
video_duration, | |
chunk_size, | |
colormode, | |
hierarchical, | |
mode, | |
filter_speckle, | |
color_precision, | |
layer_difference, | |
corner_threshold, | |
length_threshold, | |
max_iterations, | |
splice_threshold, | |
path_precision | |
], | |
outputs=[html, svg_output, video_output] | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
app.launch(share=True) |