Update app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,8 @@ import zipfile
|
|
20 |
|
21 |
MAX_IMAGES = 150
|
22 |
|
|
|
|
|
23 |
training_script_url = "https://raw.githubusercontent.com/huggingface/diffusers/ba28006f8b2a0f7ec3b6784695790422b4f80a97/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py"
|
24 |
subprocess.run(['wget', '-N', training_script_url])
|
25 |
orchestrator_script_url = "https://huggingface.co/datasets/multimodalart/lora-ease-helper/raw/main/script.py"
|
@@ -114,7 +116,17 @@ def load_captioning(uploaded_images, option):
|
|
114 |
|
115 |
def check_removed_and_restart(images):
|
116 |
visible = len(images) > 1 if images is not None else False
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
def make_options_visible(option):
|
120 |
if (option == "object") or (option == "face"):
|
@@ -388,9 +400,11 @@ def start_training_og(
|
|
388 |
enable_xformers_memory_efficient_attention,
|
389 |
adam_beta1,
|
390 |
adam_beta2,
|
|
|
391 |
prodigy_beta3,
|
392 |
prodigy_decouple,
|
393 |
adam_weight_decay,
|
|
|
394 |
adam_weight_decay_text_encoder,
|
395 |
adam_epsilon,
|
396 |
prodigy_use_bias_correction,
|
@@ -404,10 +418,14 @@ def start_training_og(
|
|
404 |
dataloader_num_workers,
|
405 |
local_rank,
|
406 |
dataset_folder,
|
407 |
-
|
|
|
408 |
):
|
|
|
|
|
409 |
slugged_lora_name = slugify(lora_name)
|
410 |
-
commands = [
|
|
|
411 |
"--pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix",
|
412 |
f"--instance_prompt={concept_sentence}",
|
413 |
f"--dataset_name=./{dataset_folder}",
|
@@ -433,9 +451,7 @@ def start_training_og(
|
|
433 |
f"--prior_loss_weight={prior_loss_weight}",
|
434 |
f"--num_new_tokens_per_abstraction={int(num_new_tokens_per_abstraction)}",
|
435 |
f"--num_train_epochs={int(num_train_epochs)}",
|
436 |
-
f"--prodigy_beta3={prodigy_beta3}",
|
437 |
f"--adam_weight_decay={adam_weight_decay}",
|
438 |
-
f"--adam_weight_decay_text_encoder={adam_weight_decay_text_encoder}",
|
439 |
f"--adam_epsilon={adam_epsilon}",
|
440 |
f"--prodigy_decouple={prodigy_decouple}",
|
441 |
f"--prodigy_use_bias_correction={prodigy_use_bias_correction}",
|
@@ -474,11 +490,16 @@ def start_training_og(
|
|
474 |
for image in class_images:
|
475 |
shutil.copy(image, class_folder)
|
476 |
commands.append(f"--class_data_dir={class_folder}")
|
477 |
-
|
|
|
|
|
|
|
478 |
from train_dreambooth_lora_sdxl_advanced import main as train_main, parse_args as parse_train_args
|
479 |
args = parse_train_args(commands)
|
|
|
480 |
train_main(args)
|
481 |
-
|
|
|
482 |
|
483 |
@spaces.GPU(enable_queue=True)
|
484 |
def run_captioning(*inputs):
|
@@ -948,7 +969,7 @@ with gr.Blocks(css=css, theme=theme) as demo:
|
|
948 |
images.change(
|
949 |
check_removed_and_restart,
|
950 |
inputs=[images],
|
951 |
-
outputs=[captioning_area, advanced, cost_estimation],
|
952 |
queue=False
|
953 |
)
|
954 |
training_option.change(
|
@@ -969,7 +990,7 @@ with gr.Blocks(css=css, theme=theme) as demo:
|
|
969 |
outputs=dataset_folder,
|
970 |
queue=False
|
971 |
).then(
|
972 |
-
fn=start_training,
|
973 |
inputs=[
|
974 |
lora_name,
|
975 |
training_option,
|
|
|
20 |
|
21 |
MAX_IMAGES = 150
|
22 |
|
23 |
+
is_spaces = True if os.environ.get('SPACE_ID') else False
|
24 |
+
|
25 |
training_script_url = "https://raw.githubusercontent.com/huggingface/diffusers/ba28006f8b2a0f7ec3b6784695790422b4f80a97/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py"
|
26 |
subprocess.run(['wget', '-N', training_script_url])
|
27 |
orchestrator_script_url = "https://huggingface.co/datasets/multimodalart/lora-ease-helper/raw/main/script.py"
|
|
|
116 |
|
117 |
def check_removed_and_restart(images):
|
118 |
visible = len(images) > 1 if images is not None else False
|
119 |
+
if(is_spaces):
|
120 |
+
captioning_area = gr.update(visible=visible)
|
121 |
+
advanced = gr.update(visible=visible)
|
122 |
+
cost_estimation = gr.update(visible=visible)
|
123 |
+
start = gr.update(visible=False)
|
124 |
+
else:
|
125 |
+
captioning_area = gr.update(visible=visible)
|
126 |
+
advanced = gr.update(visible=visible)
|
127 |
+
cost_estimation = gr.update(visible=False)
|
128 |
+
start = gr.update(visible=True)
|
129 |
+
return captioning_area, advanced,cost_estimation, start
|
130 |
|
131 |
def make_options_visible(option):
|
132 |
if (option == "object") or (option == "face"):
|
|
|
400 |
enable_xformers_memory_efficient_attention,
|
401 |
adam_beta1,
|
402 |
adam_beta2,
|
403 |
+
use_prodigy_beta3,
|
404 |
prodigy_beta3,
|
405 |
prodigy_decouple,
|
406 |
adam_weight_decay,
|
407 |
+
use_adam_weight_decay_text_encoder,
|
408 |
adam_weight_decay_text_encoder,
|
409 |
adam_epsilon,
|
410 |
prodigy_use_bias_correction,
|
|
|
418 |
dataloader_num_workers,
|
419 |
local_rank,
|
420 |
dataset_folder,
|
421 |
+
token,
|
422 |
+
#progress = gr.Progress(track_tqdm=True)
|
423 |
):
|
424 |
+
if not lora_name:
|
425 |
+
raise gr.Error("You forgot to insert your LoRA name!")
|
426 |
slugged_lora_name = slugify(lora_name)
|
427 |
+
commands = [
|
428 |
+
"--pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0",
|
429 |
"--pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix",
|
430 |
f"--instance_prompt={concept_sentence}",
|
431 |
f"--dataset_name=./{dataset_folder}",
|
|
|
451 |
f"--prior_loss_weight={prior_loss_weight}",
|
452 |
f"--num_new_tokens_per_abstraction={int(num_new_tokens_per_abstraction)}",
|
453 |
f"--num_train_epochs={int(num_train_epochs)}",
|
|
|
454 |
f"--adam_weight_decay={adam_weight_decay}",
|
|
|
455 |
f"--adam_epsilon={adam_epsilon}",
|
456 |
f"--prodigy_decouple={prodigy_decouple}",
|
457 |
f"--prodigy_use_bias_correction={prodigy_use_bias_correction}",
|
|
|
490 |
for image in class_images:
|
491 |
shutil.copy(image, class_folder)
|
492 |
commands.append(f"--class_data_dir={class_folder}")
|
493 |
+
if use_prodigy_beta3:
|
494 |
+
commands.append(f"--prodigy_beta3={prodigy_beta3}")
|
495 |
+
if use_adam_weight_decay_text_encoder:
|
496 |
+
commands.append(f"--adam_weight_decay_text_encoder={adam_weight_decay_text_encoder}")
|
497 |
from train_dreambooth_lora_sdxl_advanced import main as train_main, parse_args as parse_train_args
|
498 |
args = parse_train_args(commands)
|
499 |
+
|
500 |
train_main(args)
|
501 |
+
|
502 |
+
return f"Your model has finished training and has been saved to the `{slugged_lora_name}` folder"
|
503 |
|
504 |
@spaces.GPU(enable_queue=True)
|
505 |
def run_captioning(*inputs):
|
|
|
969 |
images.change(
|
970 |
check_removed_and_restart,
|
971 |
inputs=[images],
|
972 |
+
outputs=[captioning_area, advanced, cost_estimation, start],
|
973 |
queue=False
|
974 |
)
|
975 |
training_option.change(
|
|
|
990 |
outputs=dataset_folder,
|
991 |
queue=False
|
992 |
).then(
|
993 |
+
fn=start_training if is_spaces else start_training_og,
|
994 |
inputs=[
|
995 |
lora_name,
|
996 |
training_option,
|