Spaces:
Runtime error
Runtime error
File size: 11,783 Bytes
6b551c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
'''
python cli_app.py --input_img_path 战场原.webp --preset_traj orbit --num_frames 80 --seed 23 --chunk_strategy interp --cfg 4.0 --camera_scale 2.0
'''
import copy
import json
import os
import os.path as osp
import queue
import secrets
import threading
import time
from datetime import datetime
from glob import glob
from pathlib import Path
from typing import Literal
import imageio.v3 as iio
import numpy as np
import torch
import torch.nn.functional as F
import tyro
import viser
import viser.transforms as vt
from einops import rearrange
from seva.eval import (
IS_TORCH_NIGHTLY,
chunk_input_and_test,
create_transforms_simple,
infer_prior_stats,
run_one_scene,
transform_img_and_K,
)
from seva.geometry import (
DEFAULT_FOV_RAD,
get_default_intrinsics,
get_preset_pose_fov,
normalize_scene,
)
from seva.model import SGMWrapper
from seva.modules.autoencoder import AutoEncoder
from seva.modules.conditioner import CLIPConditioner
from seva.modules.preprocessor import Dust3rPipeline
from seva.sampling import DDPMDiscretization, DiscreteDenoiser
from seva.utils import load_model
device = "cuda:0"
# Constants.
WORK_DIR = "work_dirs/demo_gr"
MAX_SESSIONS = 1
if IS_TORCH_NIGHTLY:
COMPILE = True
os.environ["TORCHINDUCTOR_AUTOGRAD_CACHE"] = "1"
os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1"
else:
COMPILE = False
# Shared global variables across sessions.
DUST3R = Dust3rPipeline(device=device) # type: ignore
MODEL = SGMWrapper(load_model(device="cpu", verbose=True).eval()).to(device)
AE = AutoEncoder(chunk_size=1).to(device)
CONDITIONER = CLIPConditioner().to(device)
DISCRETIZATION = DDPMDiscretization()
DENOISER = DiscreteDenoiser(discretization=DISCRETIZATION, num_idx=1000, device=device)
VERSION_DICT = {
"H": 576,
"W": 576,
"T": 21,
"C": 4,
"f": 8,
"options": {},
}
SERVERS = {}
ABORT_EVENTS = {}
if COMPILE:
MODEL = torch.compile(MODEL)
CONDITIONER = torch.compile(CONDITIONER)
AE = torch.compile(AE)
class SevaRenderer(object):
def __init__(self):
self.gui_state = None
def preprocess(self, input_img_path: str) -> dict:
# Simply hardcode these such that aspect ratio is always kept and
# shorter side is resized to 576. This is only to make GUI option fewer
# though, changing it still works.
shorter: int = 576
# Has to be 64 multiple for the network.
shorter = round(shorter / 64) * 64
# Assume `Basic` demo mode: just hardcode the camera parameters and ignore points.
input_imgs = torch.as_tensor(
iio.imread(input_img_path) / 255.0, dtype=torch.float32
)[None, ..., :3]
input_imgs = transform_img_and_K(
input_imgs.permute(0, 3, 1, 2),
shorter,
K=None,
size_stride=64,
)[0].permute(0, 2, 3, 1)
input_Ks = get_default_intrinsics(
aspect_ratio=input_imgs.shape[2] / input_imgs.shape[1]
)
input_c2ws = torch.eye(4)[None]
# Simulate a small time interval such that gradio can update
# propgress properly.
time.sleep(0.1)
return {
"input_imgs": input_imgs,
"input_Ks": input_Ks,
"input_c2ws": input_c2ws,
"input_wh": (input_imgs.shape[2], input_imgs.shape[1]),
"points": [np.zeros((0, 3))],
"point_colors": [np.zeros((0, 3))],
"scene_scale": 1.0,
}
def render(
self,
preprocessed: dict,
seed: int,
chunk_strategy: str,
cfg: float,
preset_traj: Literal[
"orbit",
"spiral",
"lemniscate",
"zoom-in",
"zoom-out",
"dolly zoom-in",
"dolly zoom-out",
"move-forward",
"move-backward",
"move-up",
"move-down",
"move-left",
"move-right",
],
num_frames: int,
zoom_factor: float | None,
camera_scale: float,
) -> str:
render_name = datetime.now().strftime("%Y%m%d_%H%M%S")
render_dir = osp.join(WORK_DIR, render_name)
input_imgs, input_Ks, input_c2ws, (W, H) = (
preprocessed["input_imgs"],
preprocessed["input_Ks"],
preprocessed["input_c2ws"],
preprocessed["input_wh"],
)
num_inputs = len(input_imgs)
assert num_inputs == 1
input_c2ws = torch.eye(4)[None].to(dtype=input_c2ws.dtype)
target_c2ws, target_Ks = self.get_target_c2ws_and_Ks_from_preset(
preprocessed, preset_traj, num_frames, zoom_factor
)
all_c2ws = torch.cat([input_c2ws, target_c2ws], 0)
all_Ks = (
torch.cat([input_Ks, target_Ks], 0)
* input_Ks.new_tensor([W, H, 1])[:, None]
)
num_targets = len(target_c2ws)
input_indices = list(range(num_inputs))
target_indices = np.arange(num_inputs, num_inputs + num_targets).tolist()
# Get anchor cameras.
T = VERSION_DICT["T"]
version_dict = copy.deepcopy(VERSION_DICT)
num_anchors = infer_prior_stats(
T,
num_inputs,
num_total_frames=num_targets,
version_dict=version_dict,
)
# infer_prior_stats modifies T in-place.
T = version_dict["T"]
assert isinstance(num_anchors, int)
anchor_indices = np.linspace(
num_inputs,
num_inputs + num_targets - 1,
num_anchors,
).tolist()
anchor_c2ws = all_c2ws[[round(ind) for ind in anchor_indices]]
anchor_Ks = all_Ks[[round(ind) for ind in anchor_indices]]
# Create image conditioning.
all_imgs_np = (
F.pad(input_imgs, (0, 0, 0, 0, 0, 0, 0, num_targets), value=0.0).numpy()
* 255.0
).astype(np.uint8)
image_cond = {
"img": all_imgs_np,
"input_indices": input_indices,
"prior_indices": anchor_indices,
}
# Create camera conditioning (K is unnormalized).
camera_cond = {
"c2w": all_c2ws,
"K": all_Ks,
"input_indices": list(range(num_inputs + num_targets)),
}
# Run rendering.
num_steps = 50
options_ori = VERSION_DICT["options"]
options = copy.deepcopy(options_ori)
options["chunk_strategy"] = chunk_strategy
options["video_save_fps"] = 30.0
options["beta_linear_start"] = 5e-6
options["log_snr_shift"] = 2.4
options["guider_types"] = [1, 2]
options["cfg"] = [
float(cfg),
3.0 if num_inputs >= 9 else 2.0,
] # We define semi-dense-view regime to have 9 input views.
options["camera_scale"] = camera_scale
options["num_steps"] = num_steps
options["cfg_min"] = 1.2
options["encoding_t"] = 1
options["decoding_t"] = 1
task = "img2trajvid"
# Get number of first pass chunks.
T_first_pass = T[0] if isinstance(T, (list, tuple)) else T
chunk_strategy_first_pass = options.get(
"chunk_strategy_first_pass", "gt-nearest"
)
num_chunks_0 = len(
chunk_input_and_test(
T_first_pass,
input_c2ws,
anchor_c2ws,
input_indices,
image_cond["prior_indices"],
options={**options, "sampler_verbose": False},
task=task,
chunk_strategy=chunk_strategy_first_pass,
gt_input_inds=list(range(input_c2ws.shape[0])),
)[1]
)
# Get number of second pass chunks.
anchor_argsort = np.argsort(input_indices + anchor_indices).tolist()
anchor_indices = np.array(input_indices + anchor_indices)[
anchor_argsort
].tolist()
gt_input_inds = [anchor_argsort.index(i) for i in range(input_c2ws.shape[0])]
anchor_c2ws_second_pass = torch.cat([input_c2ws, anchor_c2ws], dim=0)[
anchor_argsort
]
T_second_pass = T[1] if isinstance(T, (list, tuple)) else T
chunk_strategy = options.get("chunk_strategy", "nearest")
num_chunks_1 = len(
chunk_input_and_test(
T_second_pass,
anchor_c2ws_second_pass,
target_c2ws,
anchor_indices,
target_indices,
options={**options, "sampler_verbose": False},
task=task,
chunk_strategy=chunk_strategy,
gt_input_inds=gt_input_inds,
)[1]
)
video_path_generator = run_one_scene(
task=task,
version_dict={
"H": H,
"W": W,
"T": T,
"C": VERSION_DICT["C"],
"f": VERSION_DICT["f"],
"options": options,
},
model=MODEL,
ae=AE,
conditioner=CONDITIONER,
denoiser=DENOISER,
image_cond=image_cond,
camera_cond=camera_cond,
save_path=render_dir,
use_traj_prior=True,
traj_prior_c2ws=anchor_c2ws,
traj_prior_Ks=anchor_Ks,
seed=seed,
gradio=True,
)
for video_path in video_path_generator:
return video_path
return ""
def get_target_c2ws_and_Ks_from_preset(
self,
preprocessed: dict,
preset_traj: Literal[
"orbit",
"spiral",
"lemniscate",
"zoom-in",
"zoom-out",
"dolly zoom-in",
"dolly zoom-out",
"move-forward",
"move-backward",
"move-up",
"move-down",
"move-left",
"move-right",
],
num_frames: int,
zoom_factor: float | None,
):
img_wh = preprocessed["input_wh"]
start_c2w = preprocessed["input_c2ws"][0]
start_w2c = torch.linalg.inv(start_c2w)
look_at = torch.tensor([0, 0, 10])
start_fov = DEFAULT_FOV_RAD
target_c2ws, target_fovs = get_preset_pose_fov(
preset_traj,
num_frames,
start_w2c,
look_at,
-start_c2w[:3, 1],
start_fov,
spiral_radii=[1.0, 1.0, 0.5],
zoom_factor=zoom_factor,
)
target_c2ws = torch.as_tensor(target_c2ws)
target_fovs = torch.as_tensor(target_fovs)
target_Ks = get_default_intrinsics(
target_fovs, # type: ignore
aspect_ratio=img_wh[0] / img_wh[1],
)
return target_c2ws, target_Ks
def main(
input_img_path: str,
preset_traj: Literal[
"orbit",
"spiral",
"lemniscate",
"zoom-in",
"zoom-out",
"dolly zoom-in",
"dolly zoom-out",
"move-forward",
"move-backward",
"move-up",
"move-down",
"move-left",
"move-right",
] = "orbit",
num_frames: int = 80,
zoom_factor: float | None = None,
seed: int = 23,
chunk_strategy: str = "interp",
cfg: float = 4.0,
camera_scale: float = 2.0,
):
renderer = SevaRenderer()
preprocessed = renderer.preprocess(input_img_path)
video_path = renderer.render(
preprocessed,
seed,
chunk_strategy,
cfg,
preset_traj,
num_frames,
zoom_factor,
camera_scale,
)
print(f"Rendered video saved to: {video_path}")
if __name__ == "__main__":
tyro.cli(main)
|