File size: 13,114 Bytes
6b551c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7c4c96
6b551c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
'''
python cli_batch_app.py --input_path imgs --preset_traj "orbit" "spiral" "lemniscate" "zoom-in" "zoom-out" "dolly zoom-in" "dolly zoom-out" "move-forward" "move-backward" "move-up" "move-down" "move-left" "move-right"  --output_dir 相机路径

python cli_batch_app.py --input_path imgs --preset_traj "orbit" "spiral" "lemniscate" --output_dir 相机路径

#### 人物 或立体主体场景
"orbit"

#### 平面风景场景
"spiral" "lemniscate"
'''

import copy
import json
import os
import os.path as osp
import queue
import secrets
import threading
import time
from datetime import datetime
from glob import glob
from pathlib import Path
from typing import Literal, List

import imageio.v3 as iio
import numpy as np
import torch
import torch.nn.functional as F
import tyro
import viser
import viser.transforms as vt
from einops import rearrange

from seva.eval import (
    IS_TORCH_NIGHTLY,
    chunk_input_and_test,
    create_transforms_simple,
    infer_prior_stats,
    run_one_scene,
    transform_img_and_K,
)
from seva.geometry import (
    DEFAULT_FOV_RAD,
    get_default_intrinsics,
    get_preset_pose_fov,
    normalize_scene,
)
from seva.model import SGMWrapper
from seva.modules.autoencoder import AutoEncoder
from seva.modules.conditioner import CLIPConditioner
from seva.modules.preprocessor import Dust3rPipeline
from seva.sampling import DDPMDiscretization, DiscreteDenoiser
from seva.utils import load_model

device = "cuda:0"

# Constants.
WORK_DIR = "work_dirs/demo_gr"
MAX_SESSIONS = 1

if IS_TORCH_NIGHTLY:
    COMPILE = True
    os.environ["TORCHINDUCTOR_AUTOGRAD_CACHE"] = "1"
    os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1"
else:
    COMPILE = False

# Shared global variables across sessions.
DUST3R = Dust3rPipeline(device=device)  # type: ignore
MODEL = SGMWrapper(load_model(device="cpu", verbose=True).eval()).to(device)
AE = AutoEncoder(chunk_size=1).to(device)
CONDITIONER = CLIPConditioner().to(device)
DISCRETIZATION = DDPMDiscretization()
DENOISER = DiscreteDenoiser(discretization=DISCRETIZATION, num_idx=1000, device=device)
VERSION_DICT = {
    "H": 576,
    "W": 576,
    "T": 21,
    "C": 4,
    "f": 8,
    "options": {},
}
SERVERS = {}
ABORT_EVENTS = {}

if COMPILE:
    MODEL = torch.compile(MODEL)
    CONDITIONER = torch.compile(CONDITIONER)
    AE = torch.compile(AE)


class SevaRenderer(object):
    def __init__(self):
        self.gui_state = None

    def preprocess(self, input_img_path: str) -> dict:
        # Simply hardcode these such that aspect ratio is always kept and
        # shorter side is resized to 576. This is only to make GUI option fewer
        # though, changing it still works.
        shorter: int = 576
        # Has to be 64 multiple for the network.
        shorter = round(shorter / 64) * 64

        # Assume `Basic` demo mode: just hardcode the camera parameters and ignore points.
        input_imgs = torch.as_tensor(
            iio.imread(input_img_path) / 255.0, dtype=torch.float32
        )[None, ..., :3]
        input_imgs = transform_img_and_K(
            input_imgs.permute(0, 3, 1, 2),
            shorter,
            K=None,
            size_stride=64,
        )[0].permute(0, 2, 3, 1)
        input_Ks = get_default_intrinsics(
            aspect_ratio=input_imgs.shape[2] / input_imgs.shape[1]
        )
        input_c2ws = torch.eye(4)[None]
        # Simulate a small time interval such that gradio can update
        # propgress properly.
        time.sleep(0.1)
        return {
            "input_imgs": input_imgs,
            "input_Ks": input_Ks,
            "input_c2ws": input_c2ws,
            "input_wh": (input_imgs.shape[2], input_imgs.shape[1]),
            "points": [np.zeros((0, 3))],
            "point_colors": [np.zeros((0, 3))],
            "scene_scale": 1.0,
        }

    def render(
        self,
        preprocessed: dict,
        seed: int,
        chunk_strategy: str,
        cfg: float,
        preset_traj: Literal[
            "orbit",
            "spiral",
            "lemniscate",
            "zoom-in",
            "zoom-out",
            "dolly zoom-in",
            "dolly zoom-out",
            "move-forward",
            "move-backward",
            "move-up",
            "move-down",
            "move-left",
            "move-right",
        ],
        num_frames: int,
        zoom_factor: float | None,
        camera_scale: float,
        output_dir: str,
    ) -> str:
        # Generate a unique render name based on the input image filename and preset_traj
        input_img_name = osp.splitext(osp.basename(preprocessed["input_img_path"]))[0]
        render_name = f"{input_img_name}_{preset_traj}"
        render_dir = osp.join(output_dir, input_img_name)
        os.makedirs(render_dir, exist_ok=True)

        input_imgs, input_Ks, input_c2ws, (W, H) = (
            preprocessed["input_imgs"],
            preprocessed["input_Ks"],
            preprocessed["input_c2ws"],
            preprocessed["input_wh"],
        )
        num_inputs = len(input_imgs)
        assert num_inputs == 1
        input_c2ws = torch.eye(4)[None].to(dtype=input_c2ws.dtype)
        target_c2ws, target_Ks = self.get_target_c2ws_and_Ks_from_preset(
            preprocessed, preset_traj, num_frames, zoom_factor
        )
        all_c2ws = torch.cat([input_c2ws, target_c2ws], 0)
        all_Ks = (
            torch.cat([input_Ks, target_Ks], 0)
            * input_Ks.new_tensor([W, H, 1])[:, None]
        )
        num_targets = len(target_c2ws)
        input_indices = list(range(num_inputs))
        target_indices = np.arange(num_inputs, num_inputs + num_targets).tolist()
        # Get anchor cameras.
        T = VERSION_DICT["T"]
        version_dict = copy.deepcopy(VERSION_DICT)
        num_anchors = infer_prior_stats(
            T,
            num_inputs,
            num_total_frames=num_targets,
            version_dict=version_dict,
        )
        # infer_prior_stats modifies T in-place.
        T = version_dict["T"]
        assert isinstance(num_anchors, int)
        anchor_indices = np.linspace(
            num_inputs,
            num_inputs + num_targets - 1,
            num_anchors,
        ).tolist()
        anchor_c2ws = all_c2ws[[round(ind) for ind in anchor_indices]]
        anchor_Ks = all_Ks[[round(ind) for ind in anchor_indices]]
        # Create image conditioning.
        all_imgs_np = (
            F.pad(input_imgs, (0, 0, 0, 0, 0, 0, 0, num_targets), value=0.0).numpy()
            * 255.0
        ).astype(np.uint8)
        image_cond = {
            "img": all_imgs_np,
            "input_indices": input_indices,
            "prior_indices": anchor_indices,
        }
        # Create camera conditioning (K is unnormalized).
        camera_cond = {
            "c2w": all_c2ws,
            "K": all_Ks,
            "input_indices": list(range(num_inputs + num_targets)),
        }
        # Run rendering.
        num_steps = 50
        options_ori = VERSION_DICT["options"]
        options = copy.deepcopy(options_ori)
        options["chunk_strategy"] = chunk_strategy
        options["video_save_fps"] = 30.0
        options["beta_linear_start"] = 5e-6
        options["log_snr_shift"] = 2.4
        options["guider_types"] = [1, 2]
        options["cfg"] = [
            float(cfg),
            3.0 if num_inputs >= 9 else 2.0,
        ]  # We define semi-dense-view regime to have 9 input views.
        options["camera_scale"] = camera_scale
        options["num_steps"] = num_steps
        options["cfg_min"] = 1.2
        options["encoding_t"] = 1
        options["decoding_t"] = 1
        task = "img2trajvid"
        # Get number of first pass chunks.
        T_first_pass = T[0] if isinstance(T, (list, tuple)) else T
        chunk_strategy_first_pass = options.get(
            "chunk_strategy_first_pass", "gt-nearest"
        )
        num_chunks_0 = len(
            chunk_input_and_test(
                T_first_pass,
                input_c2ws,
                anchor_c2ws,
                input_indices,
                image_cond["prior_indices"],
                options={**options, "sampler_verbose": False},
                task=task,
                chunk_strategy=chunk_strategy_first_pass,
                gt_input_inds=list(range(input_c2ws.shape[0])),
            )[1]
        )
        # Get number of second pass chunks.
        anchor_argsort = np.argsort(input_indices + anchor_indices).tolist()
        anchor_indices = np.array(input_indices + anchor_indices)[
            anchor_argsort
        ].tolist()
        gt_input_inds = [anchor_argsort.index(i) for i in range(input_c2ws.shape[0])]
        anchor_c2ws_second_pass = torch.cat([input_c2ws, anchor_c2ws], dim=0)[
            anchor_argsort
        ]
        T_second_pass = T[1] if isinstance(T, (list, tuple)) else T
        chunk_strategy = options.get("chunk_strategy", "nearest")
        num_chunks_1 = len(
            chunk_input_and_test(
                T_second_pass,
                anchor_c2ws_second_pass,
                target_c2ws,
                anchor_indices,
                target_indices,
                options={**options, "sampler_verbose": False},
                task=task,
                chunk_strategy=chunk_strategy,
                gt_input_inds=gt_input_inds,
            )[1]
        )
        video_path_generator = run_one_scene(
            task=task,
            version_dict={
                "H": H,
                "W": W,
                "T": T,
                "C": VERSION_DICT["C"],
                "f": VERSION_DICT["f"],
                "options": options,
            },
            model=MODEL,
            ae=AE,
            conditioner=CONDITIONER,
            denoiser=DENOISER,
            image_cond=image_cond,
            camera_cond=camera_cond,
            save_path=render_dir,
            use_traj_prior=True,
            traj_prior_c2ws=anchor_c2ws,
            traj_prior_Ks=anchor_Ks,
            seed=seed,
            gradio=True,
        )
        for video_path in video_path_generator:
            # Rename the video file to the desired format
            new_video_path = osp.join(render_dir, f"{render_name}.mp4")
            os.rename(video_path, new_video_path)
            return new_video_path
        return ""

    def get_target_c2ws_and_Ks_from_preset(
        self,
        preprocessed: dict,
        preset_traj: Literal[
            "orbit",
            "spiral",
            "lemniscate",
            "zoom-in",
            "zoom-out",
            "dolly zoom-in",
            "dolly zoom-out",
            "move-forward",
            "move-backward",
            "move-up",
            "move-down",
            "move-left",
            "move-right",
        ],
        num_frames: int,
        zoom_factor: float | None,
    ):
        img_wh = preprocessed["input_wh"]
        start_c2w = preprocessed["input_c2ws"][0]
        start_w2c = torch.linalg.inv(start_c2w)
        look_at = torch.tensor([0, 0, 10])
        start_fov = DEFAULT_FOV_RAD
        target_c2ws, target_fovs = get_preset_pose_fov(
            preset_traj,
            num_frames,
            start_w2c,
            look_at,
            -start_c2w[:3, 1],
            start_fov,
            spiral_radii=[1.0, 1.0, 0.5],
            zoom_factor=zoom_factor,
        )
        target_c2ws = torch.as_tensor(target_c2ws)
        target_fovs = torch.as_tensor(target_fovs)
        target_Ks = get_default_intrinsics(
            target_fovs,  # type: ignore
            aspect_ratio=img_wh[0] / img_wh[1],
        )
        return target_c2ws, target_Ks


def main(
    input_path: str,
    preset_traj: List[Literal[
        "orbit",
        "spiral",
        "lemniscate",
        "zoom-in",
        "zoom-out",
        "dolly zoom-in",
        "dolly zoom-out",
        "move-forward",
        "move-backward",
        "move-up",
        "move-down",
        "move-left",
        "move-right",
    ]],
    num_frames: int = 80,
    zoom_factor: float | None = None,
    seed: int = 23,
    chunk_strategy: str = "interp",
    cfg: float = 4.0,
    camera_scale: float = 2.0,
    output_dir: str = WORK_DIR,
):
    renderer = SevaRenderer()

    # Check if input_path is a directory or a single image
    if osp.isdir(input_path):
        image_paths = [osp.join(input_path, fname) for fname in os.listdir(input_path) if fname.lower().endswith(('.png', '.jpg', '.jpeg', ".webp"))]
    else:
        image_paths = [input_path]

    for input_img_path in image_paths:
        preprocessed = renderer.preprocess(input_img_path)
        preprocessed["input_img_path"] = input_img_path  # Add input_img_path to preprocessed dict

        for traj in preset_traj:
            video_path = renderer.render(
                preprocessed,
                seed,
                chunk_strategy,
                cfg,
                traj,
                num_frames,
                zoom_factor,
                camera_scale,
                output_dir,
            )
            print(f"Rendered video saved to: {video_path}")


if __name__ == "__main__":
    tyro.cli(main)