import gradio as gr from transformers import pipeline import re sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english", aggregation_strategy="simple") moderation_guidelines = """ - Allow positive messages - Block cuss words - Allow negative comments about individuals but block negative comments against a community - Block personal names """ default_cuss_words = {"damn", "hell", "shit", "fuck", "ass", "bastard", "bitch", "bollocks", "bugger", "bullshit", "crap", "dammit", "douche", "dumbass", "faggot", "jackass", "jerk", "motherfucker", "piss", "prick", "slut", "son of a bitch", "twat", "wanker"} community_terms = {"religion", "race", "ethnicity", "group", "community", "gender"} def extract_blocked_words(guidelines): """Extracts blocked words from moderation guidelines.""" match = re.search(r"block words:\s*(.*)", guidelines.lower()) return {word.strip() for word in match.group(1).split(",") if word.strip()} if match else set() def moderate_message(message, guidelines): """Moderates a message based on sentiment and dynamic moderation rules.""" sentiment = sentiment_pipeline(message)[0]['label'] blocked_words = extract_blocked_words(guidelines) allow_positive = "allow positive" in guidelines.lower() block_cuss_words = "block cuss" in guidelines.lower() allow_negative_personal = "allow negative comments about individuals" in guidelines.lower() block_negative_community = "block negative comments against a community" in guidelines.lower() block_personal_names = "block personal names" in guidelines.lower() words = set(re.findall(r'\w+', message.lower())) # 1. Block Cuss Words if block_cuss_words and words & default_cuss_words: return "❌ Message Blocked: Contains inappropriate language." # 2. Block Dynamically Defined Words if words & blocked_words: return "🚫 Message Blocked: Contains restricted words." # 3. Block Personal Names Dynamically if block_personal_names: entities = ner_pipeline(message) for entity in entities: if entity['entity_group'] == 'PER': return "🚫 Message Blocked: Contains personal names." if sentiment == "POSITIVE" and allow_positive: return f"✅ Allowed (Positive): {message}" if sentiment == "NEGATIVE": if any(word in message.lower() for word in community_terms) and block_negative_community: return "🚫 Message Blocked: Negative content targeting a community." elif allow_negative_personal: return f"⚠️ Allowed (Negative - Personal Attack): {message}" return f"✅ Allowed (Neutral): {message}" with gr.Blocks() as demo: gr.Markdown("### 🛡️ AI-Powered Moderation System") guidelines_input = gr.Textbox(value=moderation_guidelines, label="Moderation Guidelines (Admins Can Update)", lines=6) with gr.Row(): msg_input = gr.Textbox(label="Enter Message") msg_output = gr.Textbox(label="Moderation Result", interactive=False) moderate_btn = gr.Button("Check Message") moderate_btn.click(moderate_message, inputs=[msg_input, guidelines_input], outputs=[msg_output]) demo.launch()