Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,178 +1,93 @@
|
|
1 |
import streamlit as st
|
2 |
-
import pymupdf
|
3 |
-
import re
|
4 |
-
import traceback
|
5 |
-
import faiss
|
6 |
-
import numpy as np
|
7 |
-
import requests
|
8 |
-
from rank_bm25 import BM25Okapi
|
9 |
-
from sentence_transformers import SentenceTransformer
|
10 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
-
from langchain_groq import ChatGroq
|
12 |
import torch
|
13 |
-
import
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
if not docs:
|
105 |
-
return "❌ Error extracting text from PDF."
|
106 |
-
|
107 |
-
retrieved_docs = retrieve_relevant_docs(user_query, docs, index, bm25)
|
108 |
-
context = "\n\n".join(retrieved_docs)
|
109 |
-
|
110 |
-
# Avoid using 'None' in prompt
|
111 |
-
prompt = f"Based on the uploaded financial report, answer the following query:\n{user_query}\n\nRelevant context:\n{context}"
|
112 |
-
|
113 |
-
|
114 |
-
elif mode == "🌍 Live Data Mode":
|
115 |
-
financial_info = fetch_financial_data(ai_ticker)
|
116 |
-
prompt = f"Analyze the financial status of {ai_ticker} based on:\n{financial_info}\n\nUser Query: {user_query}"
|
117 |
-
else:
|
118 |
-
return "Invalid mode selected."
|
119 |
-
|
120 |
-
response = llm.invoke(prompt)
|
121 |
-
return response.content
|
122 |
-
except Exception as e:
|
123 |
-
traceback.print_exc()
|
124 |
-
return "Error generating response."
|
125 |
-
|
126 |
-
st.markdown(
|
127 |
-
"<h1 style='text-align: center; color: #4CAF50;'> FinQuery RAG Chatbot</h1>",
|
128 |
-
unsafe_allow_html=True
|
129 |
-
)
|
130 |
-
st.markdown(
|
131 |
-
"<h5 style='text-align: center; color: #666;'>Analyze financial reports or fetch live financial data effortlessly!</h5>",
|
132 |
-
unsafe_allow_html=True
|
133 |
-
)
|
134 |
-
|
135 |
-
col1, col2 = st.columns(2)
|
136 |
-
|
137 |
-
with col1:
|
138 |
-
st.markdown("### 🏢 **Choose Your Analysis Mode**")
|
139 |
-
mode = st.radio("", ["📄 PDF Upload Mode", "🌍 Live Data Mode"], horizontal=True)
|
140 |
-
|
141 |
-
with col2:
|
142 |
-
st.markdown("### **Enter Your Query**")
|
143 |
-
user_query = st.text_input("💬 What financial insights are you looking for?")
|
144 |
-
|
145 |
-
st.markdown("---")
|
146 |
-
uploaded_file, company_ticker = None, None
|
147 |
-
|
148 |
-
if mode == "📄 PDF Upload Mode":
|
149 |
-
st.markdown("### 📂 Upload Your Financial Report")
|
150 |
-
uploaded_file = st.file_uploader("🔼 Upload PDF Report", type=["pdf"])
|
151 |
-
company_ticker = None
|
152 |
-
|
153 |
-
else:
|
154 |
-
st.markdown("### 🌍 Live Market Data")
|
155 |
-
company_ticker = st.text_input("🏢 Enter Company Ticker Symbol", placeholder="e.g., AAPL, MSFT")
|
156 |
-
uploaded_file = None
|
157 |
-
|
158 |
-
# 🎯 Submit Button
|
159 |
-
if st.button("Analyze Now"):
|
160 |
-
if mode == "📄 PDF Upload Mode" and not uploaded_file:
|
161 |
-
st.error("❌ Please upload a PDF file.")
|
162 |
-
elif mode == "🌍 Live Data Mode" and not company_ticker:
|
163 |
-
st.error("❌ Please enter a valid company ticker symbol.")
|
164 |
-
else:
|
165 |
-
with st.spinner(" Your Query is Processing, this can take up to 5 - 7 minutes ⏳"):
|
166 |
-
if mode == "📄 PDF Upload Mode":
|
167 |
-
response = generate_response(user_query, company_ticker, None, mode, uploaded_file)
|
168 |
-
else:
|
169 |
-
response = generate_response(user_query, None, company_ticker, mode, uploaded_file)
|
170 |
-
|
171 |
-
st.markdown("---")
|
172 |
-
st.markdown("<h3 style='color: #4CAF50;'>💡 AI Response</h3>", unsafe_allow_html=True)
|
173 |
-
st.write(response)
|
174 |
-
|
175 |
-
|
176 |
-
# 📌 Footer
|
177 |
-
st.markdown("---")
|
178 |
-
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import timm
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
from PIL import Image
|
8 |
+
import io
|
9 |
+
|
10 |
+
# Hide Streamlit warnings and UI elements
|
11 |
+
st.set_page_config(layout="wide")
|
12 |
+
st.markdown("""
|
13 |
+
<style>
|
14 |
+
footer {visibility: hidden;}
|
15 |
+
</style>
|
16 |
+
""", unsafe_allow_html=True)
|
17 |
+
|
18 |
+
# === Model Definition ===
|
19 |
+
class MobileViTSegmentation(nn.Module):
|
20 |
+
def __init__(self, encoder_name='mobilevit_s', pretrained=False):
|
21 |
+
super().__init__()
|
22 |
+
self.backbone = timm.create_model(encoder_name, features_only=True, pretrained=pretrained)
|
23 |
+
self.encoder_channels = self.backbone.feature_info.channels()
|
24 |
+
|
25 |
+
self.decoder = nn.Sequential(
|
26 |
+
nn.Conv2d(self.encoder_channels[-1], 128, kernel_size=3, padding=1),
|
27 |
+
nn.Upsample(scale_factor=2, mode='bilinear'),
|
28 |
+
nn.Conv2d(128, 64, kernel_size=3, padding=1),
|
29 |
+
nn.Upsample(scale_factor=2, mode='bilinear'),
|
30 |
+
nn.Conv2d(64, 32, kernel_size=3, padding=1),
|
31 |
+
nn.Upsample(scale_factor=2, mode='bilinear'),
|
32 |
+
nn.Conv2d(32, 1, kernel_size=1),
|
33 |
+
nn.Sigmoid()
|
34 |
+
)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
feats = self.backbone(x)
|
38 |
+
out = self.decoder(feats[-1])
|
39 |
+
out = nn.functional.interpolate(out, size=(x.shape[2], x.shape[3]), mode='bilinear', align_corners=False)
|
40 |
+
return out
|
41 |
+
|
42 |
+
# === Load Model ===
|
43 |
+
@st.cache_resource
|
44 |
+
def load_model():
|
45 |
+
model = MobileViTSegmentation()
|
46 |
+
state_dict = torch.load("mobilevit_teeth_segmentation.pth", map_location="cpu")
|
47 |
+
model.load_state_dict(state_dict)
|
48 |
+
model.eval()
|
49 |
+
return model
|
50 |
+
|
51 |
+
model = load_model()
|
52 |
+
|
53 |
+
# === Preprocessing ===
|
54 |
+
def preprocess_image(image: Image.Image):
|
55 |
+
image = image.convert("RGB").resize((256, 256))
|
56 |
+
arr = np.array(image).astype(np.float32) / 255.0
|
57 |
+
arr = np.transpose(arr, (2, 0, 1)) # HWC → CHW
|
58 |
+
tensor = torch.tensor(arr).unsqueeze(0) # Add batch dim
|
59 |
+
return tensor
|
60 |
+
|
61 |
+
# === Postprocessing: Overlay Mask ===
|
62 |
+
def overlay_mask(image_pil, mask_tensor, threshold=0.7):
|
63 |
+
image = np.array(image_pil.resize((256, 256)))
|
64 |
+
mask = mask_tensor.squeeze().detach().numpy()
|
65 |
+
mask_bin = (mask > threshold).astype(np.uint8) * 255
|
66 |
+
|
67 |
+
mask_color = np.zeros_like(image)
|
68 |
+
mask_color[..., 2] = mask_bin # Blue mask
|
69 |
+
|
70 |
+
overlayed = cv2.addWeighted(image, 1.0, mask_color, 0.5, 0)
|
71 |
+
return overlayed
|
72 |
+
|
73 |
+
# === UI ===
|
74 |
+
st.title("🦷 Tooth Segmentation with MobileViT")
|
75 |
+
st.write("Upload an image to segment the **visible teeth area** using a lightweight MobileViT segmentation model.")
|
76 |
+
|
77 |
+
uploaded_file = st.file_uploader("Upload an Image", type=["jpg", "jpeg", "png"])
|
78 |
+
|
79 |
+
if uploaded_file:
|
80 |
+
image = Image.open(uploaded_file)
|
81 |
+
tensor = preprocess_image(image)
|
82 |
+
|
83 |
+
with st.spinner("Segmenting..."):
|
84 |
+
with torch.no_grad():
|
85 |
+
pred = model(tensor)[0]
|
86 |
+
|
87 |
+
overlayed_img = overlay_mask(image, pred)
|
88 |
+
|
89 |
+
col1, col2 = st.columns(2)
|
90 |
+
with col1:
|
91 |
+
st.image(image, caption="Original Image", use_container_width=True)
|
92 |
+
with col2:
|
93 |
+
st.image(overlayed_img, caption="Tooth Mask Overlay", use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|