Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,22 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
import torch.nn as nn
|
|
|
4 |
import timm
|
5 |
import numpy as np
|
6 |
import cv2
|
7 |
from PIL import Image
|
8 |
import io
|
|
|
9 |
|
10 |
-
|
11 |
-
st.set_page_config(layout="wide")
|
12 |
-
st.markdown("""
|
13 |
-
<style>
|
14 |
-
footer {visibility: hidden;}
|
15 |
-
</style>
|
16 |
-
""", unsafe_allow_html=True)
|
17 |
|
18 |
-
#
|
19 |
class MobileViTSegmentation(nn.Module):
|
20 |
def __init__(self, encoder_name='mobilevit_s', pretrained=False):
|
21 |
super().__init__()
|
22 |
self.backbone = timm.create_model(encoder_name, features_only=True, pretrained=pretrained)
|
23 |
self.encoder_channels = self.backbone.feature_info.channels()
|
24 |
-
|
25 |
self.decoder = nn.Sequential(
|
26 |
nn.Conv2d(self.encoder_channels[-1], 128, kernel_size=3, padding=1),
|
27 |
nn.Upsample(scale_factor=2, mode='bilinear'),
|
@@ -39,55 +34,53 @@ class MobileViTSegmentation(nn.Module):
|
|
39 |
out = nn.functional.interpolate(out, size=(x.shape[2], x.shape[3]), mode='bilinear', align_corners=False)
|
40 |
return out
|
41 |
|
42 |
-
#
|
43 |
@st.cache_resource
|
44 |
def load_model():
|
45 |
model = MobileViTSegmentation()
|
46 |
-
|
47 |
-
model.load_state_dict(state_dict)
|
48 |
model.eval()
|
49 |
return model
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
st.
|
76 |
-
|
77 |
-
|
|
|
78 |
|
79 |
if uploaded_file:
|
80 |
-
image = Image.open(uploaded_file)
|
81 |
-
|
|
|
82 |
|
83 |
-
|
84 |
-
with torch.no_grad():
|
85 |
-
pred = model(tensor)[0]
|
86 |
-
|
87 |
-
overlayed_img = overlay_mask(image, pred)
|
88 |
|
89 |
col1, col2 = st.columns(2)
|
90 |
with col1:
|
91 |
st.image(image, caption="Original Image", use_container_width=True)
|
92 |
with col2:
|
93 |
st.image(overlayed_img, caption="Tooth Mask Overlay", use_container_width=True)
|
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
+
import torchvision.transforms as transforms
|
5 |
import timm
|
6 |
import numpy as np
|
7 |
import cv2
|
8 |
from PIL import Image
|
9 |
import io
|
10 |
+
import warnings
|
11 |
|
12 |
+
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# Define the model class
|
15 |
class MobileViTSegmentation(nn.Module):
|
16 |
def __init__(self, encoder_name='mobilevit_s', pretrained=False):
|
17 |
super().__init__()
|
18 |
self.backbone = timm.create_model(encoder_name, features_only=True, pretrained=pretrained)
|
19 |
self.encoder_channels = self.backbone.feature_info.channels()
|
|
|
20 |
self.decoder = nn.Sequential(
|
21 |
nn.Conv2d(self.encoder_channels[-1], 128, kernel_size=3, padding=1),
|
22 |
nn.Upsample(scale_factor=2, mode='bilinear'),
|
|
|
34 |
out = nn.functional.interpolate(out, size=(x.shape[2], x.shape[3]), mode='bilinear', align_corners=False)
|
35 |
return out
|
36 |
|
37 |
+
# Load model function
|
38 |
@st.cache_resource
|
39 |
def load_model():
|
40 |
model = MobileViTSegmentation()
|
41 |
+
model.load_state_dict(torch.load("mobilevit_teeth_segmentation.pth", map_location="cpu"))
|
|
|
42 |
model.eval()
|
43 |
return model
|
44 |
|
45 |
+
# Inference
|
46 |
+
def predict_mask(image, model, threshold=0.7):
|
47 |
+
transform = transforms.Compose([
|
48 |
+
transforms.Resize((256, 256)),
|
49 |
+
transforms.ToTensor()
|
50 |
+
])
|
51 |
+
img_tensor = transform(image).unsqueeze(0)
|
52 |
+
with torch.no_grad():
|
53 |
+
pred = model(img_tensor)
|
54 |
+
pred_mask = pred.squeeze().numpy()
|
55 |
+
pred_mask = (pred_mask > threshold).astype(np.uint8)
|
56 |
+
return pred_mask
|
57 |
+
|
58 |
+
# Overlay mask on image
|
59 |
+
def overlay_mask(image, mask, color=(0, 0, 255), alpha=0.4):
|
60 |
+
image_np = np.array(image.convert("RGB"))
|
61 |
+
mask_resized = cv2.resize(mask, (image_np.shape[1], image_np.shape[0]))
|
62 |
+
color_mask = np.zeros_like(image_np)
|
63 |
+
color_mask[:, :] = color
|
64 |
+
overlay = np.where(mask_resized[..., None] == 1, color_mask, 0)
|
65 |
+
blended = cv2.addWeighted(image_np, 1 - alpha, overlay, alpha, 0)
|
66 |
+
return blended
|
67 |
+
|
68 |
+
# Streamlit UI
|
69 |
+
st.title("🦷 Tooth Segmentation from Mouth Images")
|
70 |
+
st.markdown("Upload a face or mouth image and get the segmented **tooth region overlayed**.")
|
71 |
+
|
72 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
73 |
|
74 |
if uploaded_file:
|
75 |
+
image = Image.open(uploaded_file).convert("RGB")
|
76 |
+
model = load_model()
|
77 |
+
pred_mask = predict_mask(image, model)
|
78 |
|
79 |
+
overlayed_img = overlay_mask(image, pred_mask, color=(0, 0, 255), alpha=0.4)
|
|
|
|
|
|
|
|
|
80 |
|
81 |
col1, col2 = st.columns(2)
|
82 |
with col1:
|
83 |
st.image(image, caption="Original Image", use_container_width=True)
|
84 |
with col2:
|
85 |
st.image(overlayed_img, caption="Tooth Mask Overlay", use_container_width=True)
|
86 |
+
|