Spaces:
Sleeping
Sleeping
import os | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from transformers import pipeline | |
from langchain.embeddings import SentenceTransformerEmbeddings | |
from langchain.vectorstores import Chroma | |
from langchain.llms.huggingface_pipeline import HuggingFacePipeline | |
from langchain.chains import RetrievalQA | |
from langchain.document_loaders import PDFMinerLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction | |
import chromadb | |
import gradio as gr | |
from gradio.components import File | |
# Define Chroma Settings | |
CHROMA_SETTINGS = { | |
"chroma_db_impl": "duckdb+parquet", | |
"persist_directory": "db", | |
"anonymized_telemetry": False | |
} | |
# Load model and tokenizer | |
checkpoint = "MBZUAI/LaMini-Flan-T5-783M" | |
tokenizer = AutoTokenizer.from_pretrained(checkpoint) | |
base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, device_map=torch.device("cpu"), torch_dtype=torch.float32) | |
# Define functions | |
def data_ingestion(file_path): | |
loader = PDFMinerLoader(file_path) | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500) | |
texts = text_splitter.split_documents(documents) | |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") | |
db = Chroma.from_documents(texts, embeddings, persist_directory=CHROMA_SETTINGS["persist_directory"]) | |
db.persist() | |
print(texts) | |
return db | |
def llm_pipeline(): | |
pipe = pipeline( | |
"text2text-generation", | |
model=base_model, | |
tokenizer=tokenizer, | |
max_length=256, | |
do_sample=True, | |
temperature=0.3, | |
top_p=0.95 | |
) | |
local_llm = HuggingFacePipeline(pipeline=pipe) | |
return local_llm | |
def qa_llm(): | |
llm = llm_pipeline() | |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") | |
vectordb = Chroma(persist_directory=CHROMA_SETTINGS["persist_directory"], embedding_function=embeddings) | |
retriever = vectordb.as_retriever() | |
qa = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=retriever, | |
return_source_documents=True | |
) | |
return qa | |
def process_answer(file): | |
db = data_ingestion(file) | |
question = input("Please enter your question: ") | |
qa = qa_llm() | |
generated_text = qa(question) | |
answer = generated_text["result"] | |
return answer | |
# Create a Gradio interface | |
demo = gr.Interface( | |
fn=process_answer, | |
inputs=File(type="pdf"), | |
outputs="text", | |
title="Chatbot", | |
description="Please enter your question:" | |
) | |
# Launch the Gradio interface | |
demo.launch() |