Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,70 +1,83 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import torch
|
4 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
5 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
6 |
from langchain.vectorstores import Chroma
|
7 |
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
8 |
from langchain.chains import RetrievalQA
|
9 |
from langchain.document_loaders import PDFMinerLoader
|
10 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
-
from chromadb.
|
|
|
12 |
|
13 |
-
#
|
14 |
-
CHROMA_SETTINGS =
|
15 |
-
chroma_db_impl
|
16 |
-
persist_directory
|
17 |
-
anonymized_telemetry
|
18 |
-
|
19 |
-
|
20 |
-
# Initialize the Chroma database on app start (assuming the database will be initialized only once)
|
21 |
-
def init_db_if_not_exists(pdf_path):
|
22 |
-
try:
|
23 |
-
# Check if the database exists and load it
|
24 |
-
db = Chroma(persist_directory=CHROMA_SETTINGS.persist_directory, client_settings=CHROMA_SETTINGS)
|
25 |
-
db.get_collection() # This line will raise an error if the collection doesn't exist
|
26 |
-
except Exception:
|
27 |
-
# If not, initialize the database
|
28 |
-
loader = PDFMinerLoader(pdf_path)
|
29 |
-
documents = loader.load()
|
30 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
31 |
-
texts = text_splitter.split_documents(documents)
|
32 |
-
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
33 |
-
db = Chroma.from_documents(texts, embeddings, persist_directory=CHROMA_SETTINGS.persist_directory)
|
34 |
-
db.persist()
|
35 |
|
36 |
-
# Load model and
|
37 |
checkpoint = "MBZUAI/LaMini-Flan-T5-783M"
|
38 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
39 |
-
base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, device_map="
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
44 |
-
vectordb = Chroma(persist_directory=CHROMA_SETTINGS
|
45 |
retriever = vectordb.as_retriever()
|
46 |
-
qa = RetrievalQA.from_chain_type(
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
def
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
-
#
|
60 |
iface = gr.Interface(
|
61 |
-
fn=
|
62 |
-
inputs=[
|
63 |
-
outputs="text"
|
64 |
-
title="PDF Chatbot",
|
65 |
-
description="Upload a PDF and ask questions about its content.",
|
66 |
)
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
+
from transformers import pipeline
|
6 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
7 |
from langchain.vectorstores import Chroma
|
8 |
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
9 |
from langchain.chains import RetrievalQA
|
10 |
from langchain.document_loaders import PDFMinerLoader
|
11 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
12 |
+
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
|
13 |
+
import chromadb
|
14 |
|
15 |
+
# Define Chroma Settings
|
16 |
+
CHROMA_SETTINGS = {
|
17 |
+
"chroma_db_impl": "duckdb+parquet",
|
18 |
+
"persist_directory": "db",
|
19 |
+
"anonymized_telemetry": False
|
20 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Load model and tokenizer
|
23 |
checkpoint = "MBZUAI/LaMini-Flan-T5-783M"
|
24 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
25 |
+
base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, device_map=torch.device("cpu"), torch_dtype=torch.float32)
|
26 |
+
|
27 |
+
# Define functions
|
28 |
+
def data_ingestion(file_path):
|
29 |
+
loader = PDFMinerLoader(file_path)
|
30 |
+
documents = loader.load()
|
31 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500)
|
32 |
+
texts = text_splitter.split_documents(documents)
|
33 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
34 |
+
db = Chroma.from_documents(texts, embeddings, persist_directory=CHROMA_SETTINGS["persist_directory"])
|
35 |
+
db.persist()
|
36 |
+
print(texts)
|
37 |
+
return db
|
38 |
|
39 |
+
def llm_pipeline():
|
40 |
+
pipe = pipeline(
|
41 |
+
"text2text-generation",
|
42 |
+
model=base_model,
|
43 |
+
tokenizer=tokenizer,
|
44 |
+
max_length=256,
|
45 |
+
do_sample=True,
|
46 |
+
temperature=0.3,
|
47 |
+
top_p=0.95
|
48 |
+
)
|
49 |
+
local_llm = HuggingFacePipeline(pipeline=pipe)
|
50 |
+
return local_llm
|
51 |
+
|
52 |
+
def qa_llm():
|
53 |
+
llm = llm_pipeline()
|
54 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
55 |
+
vectordb = Chroma(persist_directory=CHROMA_SETTINGS["persist_directory"], embedding_function=embeddings)
|
56 |
retriever = vectordb.as_retriever()
|
57 |
+
qa = RetrievalQA.from_chain_type(
|
58 |
+
llm=llm,
|
59 |
+
chain_type="stuff",
|
60 |
+
retriever=retriever,
|
61 |
+
return_source_documents=True
|
62 |
+
)
|
63 |
+
|
64 |
+
return qa
|
65 |
|
66 |
+
def process_answer(file, instruction):
|
67 |
+
# Ingest the data from the uploaded PDF
|
68 |
+
data_ingestion(file.name)
|
69 |
+
# Process the question
|
70 |
+
qa = qa_llm()
|
71 |
+
generated_text = qa(instruction)
|
72 |
+
answer = generated_text["result"]
|
73 |
+
return answer
|
74 |
|
75 |
+
# Define Gradio interface
|
76 |
iface = gr.Interface(
|
77 |
+
fn=process_answer,
|
78 |
+
inputs=["file", "text"],
|
79 |
+
outputs="text"
|
|
|
|
|
80 |
)
|
81 |
|
82 |
+
# Launch the interface
|
83 |
+
iface.launch()
|
|