sweetfelinity commited on
Commit
a4e6f8e
·
verified ·
1 Parent(s): 81c284a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -43
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import tensorflow as tf
2
- from tensorflow.keras import layers, models
3
  import gradio as gr
4
  import numpy as np
5
  import cv2
@@ -7,50 +7,9 @@ import os
7
 
8
  classes = ["Abyssinian", "Bengal", "Birman", "Bombay", "British Shorthair", "Egyptian Mau", "Maine Coon", "Persian", "Ragdoll", "Russian Blue", "Siamese", "Sphynx"]
9
  example_images = ["examples/" + f for f in os.listdir("examples")]
10
-
11
  img_size = 400
12
- num_classes = 12
13
-
14
- # Create CNN model architecture and apply weights from file
15
- def create_model():
16
- model = models.Sequential()
17
- model.add(layers.RandomFlip("horizontal_and_vertical"))
18
- model.add(layers.RandomRotation(0.2))
19
- model.add(layers.RandomZoom((0, 0.2)))
20
- model.add(layers.Rescaling(1./255))
21
-
22
- model.add(layers.Conv2D(8, 3, activation="relu"))
23
- model.add(layers.BatchNormalization())
24
- model.add(layers.MaxPooling2D())
25
-
26
- model.add(layers.Conv2D(16, 3, activation="relu"))
27
- model.add(layers.BatchNormalization())
28
- model.add(layers.MaxPooling2D())
29
-
30
- model.add(layers.Conv2D(32, 3, activation="relu"))
31
- model.add(layers.BatchNormalization())
32
- model.add(layers.MaxPooling2D())
33
-
34
- model.add(layers.Conv2D(64, 3, activation="relu"))
35
- model.add(layers.BatchNormalization())
36
- model.add(layers.MaxPooling2D())
37
-
38
- model.add(layers.Conv2D(92, 3, activation="relu"))
39
- model.add(layers.BatchNormalization())
40
- model.add(layers.MaxPooling2D())
41
-
42
- model.add(layers.BatchNormalization())
43
-
44
- model.add(layers.Flatten())
45
-
46
- model.add(layers.Dense(1024, activation="relu"))
47
- model.add(layers.Dropout(0.5))
48
- model.add(layers.Dense(512, activation="relu"))
49
- model.add(layers.Dense(num_classes, activation="softmax"))
50
- model.load_weights("CatClassifierWeights.h5")
51
- return model
52
 
53
- model = create_model()
54
 
55
  def model_predict(image):
56
  image = cv2.resize(image, (img_size, img_size))
 
1
  import tensorflow as tf
2
+ from tensorflow import keras
3
  import gradio as gr
4
  import numpy as np
5
  import cv2
 
7
 
8
  classes = ["Abyssinian", "Bengal", "Birman", "Bombay", "British Shorthair", "Egyptian Mau", "Maine Coon", "Persian", "Ragdoll", "Russian Blue", "Siamese", "Sphynx"]
9
  example_images = ["examples/" + f for f in os.listdir("examples")]
 
10
  img_size = 400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ model = tf.keras.models.load_model("CatClassifier")
13
 
14
  def model_predict(image):
15
  image = cv2.resize(image, (img_size, img_size))