Spaces:
Sleeping
Sleeping
Attempt to load model weights instead of direct model from file
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import tensorflow as tf
|
2 |
-
from tensorflow import
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import cv2
|
@@ -9,8 +9,48 @@ classes = ["Abyssinian", "Bengal", "Birman", "Bombay", "British Shorthair", "Egy
|
|
9 |
example_images = ["examples/" + f for f in os.listdir("examples")]
|
10 |
|
11 |
img_size = 400
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def model_predict(image):
|
16 |
image = cv2.resize(image, (img_size, img_size))
|
|
|
1 |
import tensorflow as tf
|
2 |
+
from tensorflow.keras import layers, models
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import cv2
|
|
|
9 |
example_images = ["examples/" + f for f in os.listdir("examples")]
|
10 |
|
11 |
img_size = 400
|
12 |
+
num_classes = 12
|
13 |
+
|
14 |
+
# Create CNN model architecture and apply weights from file
|
15 |
+
def create_model():
|
16 |
+
model = models.Sequential()
|
17 |
+
model.add(layers.RandomFlip("horizontal_and_vertical"))
|
18 |
+
model.add(layers.RandomRotation(0.2))
|
19 |
+
model.add(layers.RandomZoom((0, 0.2)))
|
20 |
+
model.add(layers.Rescaling(1./255))
|
21 |
+
|
22 |
+
model.add(layers.Conv2D(8, 3, activation="relu"))
|
23 |
+
model.add(layers.BatchNormalization())
|
24 |
+
model.add(layers.MaxPooling2D())
|
25 |
+
|
26 |
+
model.add(layers.Conv2D(16, 3, activation="relu"))
|
27 |
+
model.add(layers.BatchNormalization())
|
28 |
+
model.add(layers.MaxPooling2D())
|
29 |
+
|
30 |
+
model.add(layers.Conv2D(32, 3, activation="relu"))
|
31 |
+
model.add(layers.BatchNormalization())
|
32 |
+
model.add(layers.MaxPooling2D())
|
33 |
+
|
34 |
+
model.add(layers.Conv2D(64, 3, activation="relu"))
|
35 |
+
model.add(layers.BatchNormalization())
|
36 |
+
model.add(layers.MaxPooling2D())
|
37 |
+
|
38 |
+
model.add(layers.Conv2D(92, 3, activation="relu"))
|
39 |
+
model.add(layers.BatchNormalization())
|
40 |
+
model.add(layers.MaxPooling2D())
|
41 |
+
|
42 |
+
model.add(layers.BatchNormalization())
|
43 |
+
|
44 |
+
model.add(layers.Flatten())
|
45 |
+
|
46 |
+
model.add(layers.Dense(1024, activation="relu"))
|
47 |
+
model.add(layers.Dropout(0.5))
|
48 |
+
model.add(layers.Dense(512, activation="relu"))
|
49 |
+
model.add(layers.Dense(num_classes, activation="softmax"))
|
50 |
+
model.load_weights("CatClassifierWeights.h5")
|
51 |
+
return model
|
52 |
+
|
53 |
+
model = create_model()
|
54 |
|
55 |
def model_predict(image):
|
56 |
image = cv2.resize(image, (img_size, img_size))
|