File size: 2,960 Bytes
2a0517c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import torch
import argparse
from diffusers.utils import load_image, check_min_version
from controlnet_flux import FluxControlNetModel
from transformer_flux import FluxTransformer2DModel
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline


def main(image, mask, prompt):
    check_min_version("0.30.2")

    # Enable memory optimizations
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True
    torch.cuda.empty_cache()
    torch.backends.cudnn.benchmark = True

    # Set environment variable for memory allocation
    import os
    os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"

    # Build pipeline components
    controlnet = FluxControlNetModel.from_pretrained(
        "alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha",
        torch_dtype=torch.bfloat16,
    ).to("cuda")

    transformer = FluxTransformer2DModel.from_pretrained(
        "black-forest-labs/FLUX.1-dev",
        subfolder="transformer",
        torch_dtype=torch.bfloat16,
    ).to("cuda")

    pipe = FluxControlNetInpaintingPipeline.from_pretrained(
        "black-forest-labs/FLUX.1-dev",
        controlnet=controlnet,
        transformer=transformer,
        torch_dtype=torch.bfloat16,
    ).to("cuda")

    # Enable memory efficient attention
    pipe.enable_attention_slicing(1)

    # Load and process images
    size = (384, 384)  # or even (256, 256)
    image = image.convert("RGB").resize(size)
    mask = mask.convert("RGB").resize(size)

    # Set generator
    generator = torch.Generator(device="cuda").manual_seed(24)

    # Run inference with memory optimizations
    with torch.cuda.amp.autocast():  # Enable automatic mixed precision
        result = pipe(
            prompt=prompt,
            height=size[1],
            width=size[0],
            control_image=image,
            control_mask=mask,
            num_inference_steps=28,
            generator=generator,
            controlnet_conditioning_scale=0.9,
            guidance_scale=3.5,
            negative_prompt="",
            true_guidance_scale=1.0,
        ).images[0]

    # Clear cache after generation
    torch.cuda.empty_cache()

    print("Successfully inpaint image")
    return result


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Inpaint an image using FluxControlNetInpaintingPipeline."
    )
    parser.add_argument(
        "--image_path", type=str, required=True, help="Path to the input image."
    )
    parser.add_argument(
        "--mask_path", type=str, required=True, help="Path to the mask image."
    )
    parser.add_argument(
        "--prompt", type=str, required=True, help="Prompt for the inpainting process."
    )

    args = parser.parse_args()
    result = main(args.image_path, args.mask_path, args.prompt)
    result.save("output.png")