Spaces:
Build error
Build error
Commit
·
13f9afa
1
Parent(s):
47f00bf
Create sentiment_analysis_app.py
Browse files- sentiment_analysis_app.py +77 -0
sentiment_analysis_app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pip install streamlit pandas numpy scikit-learn nltk
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn.tree import DecisionTreeClassifier
|
8 |
+
import re
|
9 |
+
from nltk.corpus import stopwords
|
10 |
+
from nltk.stem import SnowballStemmer
|
11 |
+
|
12 |
+
# Download NLTK resources
|
13 |
+
import nltk
|
14 |
+
nltk.download('stopwords')
|
15 |
+
|
16 |
+
# Load stopwords
|
17 |
+
stopword = set(stopwords.words('english'))
|
18 |
+
|
19 |
+
# Load dataset
|
20 |
+
data = pd.read_csv("https://raw.githubusercontent.com/amankharwal/Website-data/master/twitter.csv")
|
21 |
+
|
22 |
+
# Map labels
|
23 |
+
data["labels"] = data["class"].map({0: "Hate Speech",
|
24 |
+
1: "Offensive Language",
|
25 |
+
2: "No Hate and Offensive"})
|
26 |
+
|
27 |
+
# Select relevant columns
|
28 |
+
data = data[["tweet", "labels"]]
|
29 |
+
|
30 |
+
# Clean text function
|
31 |
+
stemmer = SnowballStemmer("english")
|
32 |
+
def clean(text):
|
33 |
+
text = str(text).lower()
|
34 |
+
text = re.sub('\[.*?\]', '', text)
|
35 |
+
text = re.sub('https?://\S+|www\.\S+', '', text)
|
36 |
+
text = re.sub('<.*?>+', '', text)
|
37 |
+
text = re.sub('[%s]' % re.escape(string.punctuation), '', text)
|
38 |
+
text = re.sub('\n', '', text)
|
39 |
+
text = re.sub('\w*\d\w*', '', text)
|
40 |
+
text = [word for word in text.split(' ') if word not in stopword]
|
41 |
+
text = " ".join(text)
|
42 |
+
text = [stemmer.stem(word) for word in text.split(' ')]
|
43 |
+
text = " ".join(text)
|
44 |
+
return text
|
45 |
+
|
46 |
+
# Apply text cleaning
|
47 |
+
data["tweet"] = data["tweet"].apply(clean)
|
48 |
+
|
49 |
+
# Prepare data for model
|
50 |
+
x = np.array(data["tweet"])
|
51 |
+
y = np.array(data["labels"])
|
52 |
+
|
53 |
+
cv = CountVectorizer()
|
54 |
+
X = cv.fit_transform(x) # Fit the Data
|
55 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
|
56 |
+
|
57 |
+
# Train the model
|
58 |
+
clf = DecisionTreeClassifier()
|
59 |
+
clf.fit(X_train, y_train)
|
60 |
+
|
61 |
+
# Streamlit app
|
62 |
+
st.title("Sentiment Analysis App")
|
63 |
+
|
64 |
+
# User input
|
65 |
+
sample = st.text_area("Enter a sentence for sentiment analysis:")
|
66 |
+
|
67 |
+
# Predict and display result
|
68 |
+
if st.button("Predict"):
|
69 |
+
sample_cleaned = clean(sample)
|
70 |
+
data_sample = cv.transform([sample_cleaned]).toarray()
|
71 |
+
prediction = clf.predict(data_sample)[0]
|
72 |
+
st.success(f"Sentiment: {prediction}")
|
73 |
+
|
74 |
+
# Display dataset
|
75 |
+
st.subheader("Dataset")
|
76 |
+
st.write(data.head())
|
77 |
+
streamlit run sentiment_analysis_app.py
|