syedabdullah32 commited on
Commit
13f9afa
·
1 Parent(s): 47f00bf

Create sentiment_analysis_app.py

Browse files
Files changed (1) hide show
  1. sentiment_analysis_app.py +77 -0
sentiment_analysis_app.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ pip install streamlit pandas numpy scikit-learn nltk
2
+ import streamlit as st
3
+ import pandas as pd
4
+ import numpy as np
5
+ from sklearn.feature_extraction.text import CountVectorizer
6
+ from sklearn.model_selection import train_test_split
7
+ from sklearn.tree import DecisionTreeClassifier
8
+ import re
9
+ from nltk.corpus import stopwords
10
+ from nltk.stem import SnowballStemmer
11
+
12
+ # Download NLTK resources
13
+ import nltk
14
+ nltk.download('stopwords')
15
+
16
+ # Load stopwords
17
+ stopword = set(stopwords.words('english'))
18
+
19
+ # Load dataset
20
+ data = pd.read_csv("https://raw.githubusercontent.com/amankharwal/Website-data/master/twitter.csv")
21
+
22
+ # Map labels
23
+ data["labels"] = data["class"].map({0: "Hate Speech",
24
+ 1: "Offensive Language",
25
+ 2: "No Hate and Offensive"})
26
+
27
+ # Select relevant columns
28
+ data = data[["tweet", "labels"]]
29
+
30
+ # Clean text function
31
+ stemmer = SnowballStemmer("english")
32
+ def clean(text):
33
+ text = str(text).lower()
34
+ text = re.sub('\[.*?\]', '', text)
35
+ text = re.sub('https?://\S+|www\.\S+', '', text)
36
+ text = re.sub('<.*?>+', '', text)
37
+ text = re.sub('[%s]' % re.escape(string.punctuation), '', text)
38
+ text = re.sub('\n', '', text)
39
+ text = re.sub('\w*\d\w*', '', text)
40
+ text = [word for word in text.split(' ') if word not in stopword]
41
+ text = " ".join(text)
42
+ text = [stemmer.stem(word) for word in text.split(' ')]
43
+ text = " ".join(text)
44
+ return text
45
+
46
+ # Apply text cleaning
47
+ data["tweet"] = data["tweet"].apply(clean)
48
+
49
+ # Prepare data for model
50
+ x = np.array(data["tweet"])
51
+ y = np.array(data["labels"])
52
+
53
+ cv = CountVectorizer()
54
+ X = cv.fit_transform(x) # Fit the Data
55
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
56
+
57
+ # Train the model
58
+ clf = DecisionTreeClassifier()
59
+ clf.fit(X_train, y_train)
60
+
61
+ # Streamlit app
62
+ st.title("Sentiment Analysis App")
63
+
64
+ # User input
65
+ sample = st.text_area("Enter a sentence for sentiment analysis:")
66
+
67
+ # Predict and display result
68
+ if st.button("Predict"):
69
+ sample_cleaned = clean(sample)
70
+ data_sample = cv.transform([sample_cleaned]).toarray()
71
+ prediction = clf.predict(data_sample)[0]
72
+ st.success(f"Sentiment: {prediction}")
73
+
74
+ # Display dataset
75
+ st.subheader("Dataset")
76
+ st.write(data.head())
77
+ streamlit run sentiment_analysis_app.py