File size: 5,295 Bytes
4622b44 1279782 4622b44 d885a52 4622b44 737ec25 9acd233 bda7431 fa25b8d 4622b44 af02505 383aa7e f7e5d1b 383aa7e 244c35c 383aa7e f7e5d1b 244c35c 383aa7e f7e5d1b 383aa7e fa25b8d 169c06a 974149d 8334105 974149d 8334105 974149d 4895b5f 8334105 e8b709f 8334105 708bb4e 4622b44 fa25b8d f9de43f 3d14c4c f9de43f af1f46a fa25b8d f9de43f 4895b5f af02505 4622b44 f9de43f 4622b44 f9de43f 4895b5f 4622b44 c68f3a4 4622b44 f9de43f 4895b5f 4622b44 4895b5f f9de43f 04dd650 f9de43f 04dd650 4895b5f 4622b44 1e12937 f9de43f 4895b5f f9de43f 4895b5f f9de43f 4895b5f d144786 f9de43f 4622b44 1e12937 f9de43f 9acd233 244c35c 9acd233 244c35c 9acd233 f9de43f e6a4a0d 4895b5f e6a4a0d f9de43f 4895b5f f9de43f 4895b5f f9de43f 4895b5f f9de43f 4895b5f 4622b44 1e12937 4622b44 f9de43f 4622b44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
import torch
import cv2
import os
import numpy as np
from PIL import Image, ImageEnhance
from ultralytics import YOLO
from decord import VideoReader, cpu
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from backPrompt import main as main_b
from frontPrompt import main as main_f
import sentencepiece as spm
model_path = "best.pt"
modelY = YOLO(model_path)
os.environ["TRANSFORMERS_CACHE"] = "./.cache"
cache_folder = "./.cache"
path = "OpenGVLab/InternVL2_5-2B"
# Load the Hugging Face model and tokenizer globally (downloaded only once)
model = AutoModel.from_pretrained(
path,
cache_dir=cache_folder,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
# load_in_8bit=True,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True
).eval().cpu()
tokenizer = AutoTokenizer.from_pretrained(
path,
cache_dir=cache_folder,
trust_remote_code=True,
use_fast=False
)
def preprocessing(image):
"""Apply three enhancement filters without resizing or cropping."""
# Ensure the image is a PIL Image
if not isinstance(image, Image.Image):
image = Image.fromarray(np.array(image))
# Apply enhancements
image = ImageEnhance.Sharpness(image).enhance(2.0) # Increase sharpness
image = ImageEnhance.Contrast(image).enhance(1.5) # Increase contrast
image = ImageEnhance.Brightness(image).enhance(0.8) # Reduce brightness
# Convert to tensor without resizing
# image_tensor = torch.tensor(np.array(image)).permute(2, 0, 1).float() / 255.0 # Shape: [C, H, W]
return image
def imageRotation(image):
return image
def detect_document(image):
"""Detects front and back of the document using YOLO."""
image = ensure_numpy(image) # Ensure valid format
results = modelY(image, conf=0.85)
detected_classes = set()
labels = []
bounding_boxes = []
for result in results:
for box in result.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
conf = box.conf[0]
cls = int(box.cls[0])
class_name = modelY.names[cls]
detected_classes.add(class_name)
label = f"{class_name} {conf:.2f}"
labels.append(label)
bounding_boxes.append((x1, y1, x2, y2, class_name, conf))
# Draw bounding box
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
possible_classes = {"front", "back"}
missing_classes = possible_classes - detected_classes
if missing_classes:
labels.append(f"Missing: {', '.join(missing_classes)}")
return Image.fromarray(image.astype(np.uint8)), labels, bounding_boxes
def crop_image(image, bounding_boxes):
"""Crops detected bounding boxes from the image safely."""
image = ensure_numpy(image) # Ensure image is NumPy format
cropped_images = {}
for (x1, y1, x2, y2, class_name, conf) in bounding_boxes:
# Ensure the bounding box is within image bounds
x1, y1, x2, y2 = max(0, x1), max(0, y1), min(image.shape[1], x2), min(image.shape[0], y2)
cropped = image[y1:y2, x1:x2]
if cropped.size > 0: # Check if valid
cropped_images[class_name] = Image.fromarray(cropped)
return cropped_images
def vision_ai_api(image, doc_type):
if doc_type == "front":
results = main_f(image,model,tokenizer)
if doc_type == "back":
results = main_b(image,model,tokenizer)
return results
def ensure_numpy(image):
"""Ensure image is a valid NumPy array."""
if isinstance(image, torch.Tensor):
# Convert PyTorch tensor to NumPy array
image = image.permute(1, 2, 0).cpu().numpy()
elif isinstance(image, Image.Image):
# Convert PIL image to NumPy array
image = np.array(image)
if len(image.shape) == 2:
# Convert grayscale to 3-channel image
image = np.stack([image] * 3, axis=-1)
# return image
return image.astype(np.uint8)
def predict(image):
"""Pipeline: Preprocess -> Detect -> Crop -> Vision AI API."""
processed_image = preprocessing(image) # Enhanced PIL image
rotated_image = ensure_numpy(processed_image) # Convert to NumPy
detected_image, labels, bounding_boxes = detect_document(rotated_image)
if not bounding_boxes:
return detected_image, labels, {"error": "No document detected!"}
cropped_images = crop_image(rotated_image, bounding_boxes)
# Call Vision AI separately for front and back if detected
front_result = back_result = None
if "front" in cropped_images:
front_result = vision_ai_api(cropped_images["front"], "front")
if "back" in cropped_images:
back_result = vision_ai_api(cropped_images["back"], "back")
api_results = {
"front": front_result,
"back": back_result
}
return detected_image, labels, api_results
iface = gr.Interface(
fn=predict,
inputs="image",
outputs=["image", "text", "json"],
title="License Field Detection (Front & Back Card)"
)
iface.launch()
|