import gradio as gr import torch import cv2 import numpy as np from PIL import Image from ultralytics import YOLO # Load YOLOv11 Model model_path = "best.pt" model = YOLO(model_path) def predict(image): image = np.array(image) results = model(image) # Draw bounding boxes for result in results: for box in result.boxes: x1, y1, x2, y2 = map(int, box.xyxy[0]) conf = box.conf[0] cls = int(box.cls[0]) label = f"{model.names[cls]} {conf:.2f}" cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) return Image.fromarray(image) # Gradio Interface iface = gr.Interface(fn=predict, inputs="image", outputs="image", title="YOLOv11 Object Detection") iface.launch()