File size: 23,032 Bytes
400a76d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
#All Plots in THIS APP ARE BASED ON pegasus (As opposed to scanpy in previous versions)
import os
import numpy as np
import streamlit as st
#from st_aggrid import AgGrid, GridOptionsBuilder,GridUpdateMode,DataReturnMode

#import scanpy as sc
import pegasus as pg
from pandas import read_csv, pivot
import seaborn as sns
from seaborn import clustermap
import matplotlib.pyplot as plt
from matplotlib.pyplot import rc_context
from matplotlib import rcParams
#import matplotlib as mpl
#import pandas as pd
#import matplotlib.font_manager as fm




import matplotlib.pyplot as plt

plt.rcParams.update({'figure.autolayout': True})
plt.rcParams['axes.linewidth'] = 0.001


#from functions import pathway_analyses

#sc.settings.set_figure_params(dpi=80, facecolor='white',fontsize=12)
@st.cache_data
def get_data():
    if 'adata_annot' not in st.session_state or 'cell_type' not in st.session_state or 'broad_type' not in st.session_state or 'cluster_table' not in st.session_state or 'go_table' not in st.session_state or 'all_pwaydata' not in st.session_state:
        adata_annot = pg.read_input(cwd+'new_multiregion_brainaging_annotated.h5ad')
        st.session_state['adata_annot'] = adata_annot
        if 'genes_list' not in st.session_state:        
            genes=adata_annot.var.index
            #genes_list=sorted(genes.unique())
            st.session_state['genes_list'] = sorted(genes.unique())
        if 'cell_type' not in st.session_state:
            anno=adata_annot.obs.new_anno
            st.session_state['cell_type'] = sorted(anno.unique())
            
    #Also load Go Terms
    if 'go_table' not in st.session_state or 'all_pwaydata' not in st.session_state:  
        
        ###new
        #All pathways database
        go_table=['Aging_Perturbations_from_GEO_DOWN','Aging_Perturbations_from_GEO_UP','Disease_Perturbations_from_GEO_down','Disease_Perturbations_from_GEO_up','GO_Biological_Process_2021','GO_Cellular_Component_2021','GO_Molecular_Function_2021','KEGG 2021 Human','Wiki 2021 Human']
        all_pwaydata={}
        #get pathways
        import pandas as pd
        for f in go_table:
            all_pwaydata[f]=pd.read_csv("megan_pathways/"+f+".csv")
        st.session_state['go_table']=go_table
        st.session_state['all_pwaydata']=all_pwaydata
        ###new
        #Also get clustermap data set
    if 'cluster_table' not in st.session_state:        
        st.session_state['cluster_table'] = pd.read_csv('aging.glmmtmb_age_diffs_fdr.csv',index_col=0)
#done load Data
#disable st.pyplot warning
st.set_page_config(layout="wide") 
st.markdown(
    """
<style>
.streamlit-expanderHeader {
    font-size: x-large;
}
</style>
""",
    unsafe_allow_html=True,
)
m=st.markdown("""

<style>

div.stTitle {

font-size:40px;

}

</style>"""
,unsafe_allow_html=True)

st.set_option('deprecation.showPyplotGlobalUse', False)

#load Data
cwd=os.getcwd()+'/'#+'data/'

def convert_df(df):
    return df.to_csv().encode('utf-8')

def disp_table(data_table): 
    if data_table.shape[0]>0:
        #df = transform(data_table,'Please Select columns to save whole table')
        #fname = st_keyup("Please input file name to save Table", value='temp') #st.text_input('Please input file name to save Table', 'temp', live=True)
        
        csv = convert_df(data_table)

        st.download_button(
            label="Download Table as CSV file",
            data=csv,
            #file_name=fname+'.csv',
            file_name='download_gene_list.csv',
            mime='text/csv',
        )



#st.title('Single nuclei atlas of human aging in brain regions')

get_data()
st.title('Brain Age Browser')
txt="In the event of APP CRASH, Please Press Reset Button below"
st.markdown(f'<p style=color:red;font-size:24px;border-radius:2%;">{txt}</p>', unsafe_allow_html=True)

#st.header("In the event of **APP CRASH**, Please Press Reset Button below")
m = st.markdown("""
<style>
div.stButton > button:first-child {
    background-color: #0099ff;
    color:#ffffff;
}
div.stButton > button:hover {
    background-color: #00ff00;
    color:#ff0000;
    }
</style>""", unsafe_allow_html=True)

#b = st.button("点我开始运行程序")
clear=st.button('Reset')
if clear:
    st.cache_data.clear()
    #st.runtime.legacy_caching.clear_cache()

#tab1, tab2,readme = st.tabs(["Gene Expression by CellType", "Age associations for multiple genes", "README"])
st.write('<style>div.row-widget.stRadio > div{flex-direction:row;justify-content: center;} </style>', unsafe_allow_html=True)

opt_selected = st.radio(
    "**Please select an option**",
    ("Gene Expression by CellType", "Age associations for Multiple genes", "Age associations with GoTerms", "README"))

if opt_selected == 'Gene Expression by CellType':
#tab1, tab2,tab3,readme = st.tabs(["Gene Expression by CellType", "Age associations for Multiple genes", "Age associations with GoTerms", "README"])
#data = np.random.randn(10, 1)
#with tab1:
    with st.form(key='columns_in_form'):
        #c1, c2, c3 = st.columns([4,4,2])
        c1, c2 = st.columns(2)
        with c1:
            selected_gene = st.selectbox(
            'Please select a gene',
            st.session_state['genes_list'])
        with c2:
            selected_celltype = st.selectbox(
            'Please select CellType',
            st.session_state['cell_type']
            )
        Updated=st.form_submit_button(label = 'Go')
    if not isinstance(selected_gene, type(None)) and not isinstance(selected_celltype, type(None)) and Updated:
        ### NEW CODE
        tita="155,192 annotated nuclei from four brain regions"
        #st.write(tit)
        html_stra = f"""
            <style>
            p.a {{
            font: bold {16}px Courier;
            text-align: center;
            }}
            </style>
            <p class="a">{tita}</p>
            """
        st.markdown(html_stra, unsafe_allow_html=True)
        
        cc1,cc2=st.columns([1,1])
        with cc1:
            dot10=pg.scatter(st.session_state['adata_annot'],attrs=['new_anno'],basis='umap', wspace=.02,legend_loc='on data',legend_fontsize=7,return_fig=True)
            dot10.get_figure().gca().set_title("")
            dot10.get_figure().gca().axis('off')
            
            xmin, xmax = dot10.get_figure().gca().get_xaxis().get_view_interval()
            ymin, ymax = dot10.get_figure().gca().get_yaxis().get_view_interval()
            dot10.get_figure().gca().arrow(xmin, ymin, xmax/4, 0, head_width=0.2, head_length=0.3, linewidth=.5, color='k', length_includes_head=True)
            dot10.get_figure().gca().text(x=.1*xmin, y=ymin, s="UMAP1", rotation=0, fontsize=5, color='k')
            dot10.get_figure().gca().arrow(xmin, ymin, 0,ymax/4, head_width=0.2, head_length=0.3, linewidth=.5, color='k', length_includes_head=True)
            dot10.get_figure().gca().text(x=1.1*xmin, y=.1*ymin, s="UMAP2", rotation=0, fontsize=5, color='k')
            st.pyplot(dot10)   
        with cc2:                    
            dot11=pg.scatter(st.session_state['adata_annot'],attrs=selected_gene,basis='umap', wspace=.02,legend_loc='on data',legend_fontsize=7,return_fig=True)
            dot11.get_figure().gca().set_title("")
            #dot11.get_figure().gca().axis('off')     
            st.pyplot(dot11)   
        #Subset Young and Old
        adata_Young = st.session_state['adata_annot'][st.session_state['adata_annot'].obs['Age_group']=='young']
        adata_Old = st.session_state['adata_annot'][st.session_state['adata_annot'].obs['Age_group']=='old']        
        #Young/Old  but for cell_type
        adata_YoungAst = adata_Young[adata_Young.obs['new_anno']==selected_celltype]
        adata_OldAst = adata_Old[adata_Old.obs['new_anno']==selected_celltype]
        #tit=selected_gene+": coefficient estimate: 0.24 | BH-FDR p=7.91x$10^{-3}$"
        tit="Expression of "+selected_gene+" across old and young age groups"
        #st.write(tit)
        html_str = f"""
            <style>
            p.a {{
            font: bold {16}px Courier;
            text-align: center;
            }}
            </style>
            <p class="a">{tit}</p>
            """
        st.markdown(html_str, unsafe_allow_html=True)
        cc1,cc2=st.columns([1,1])
        with cc1:
        ########
            dot12=pg.scatter_groups(st.session_state['adata_annot'], attr=selected_gene, basis='umap', groupby='Age_group', cmap='BuPu', vmin=0, vmax=6,show_full=False,nrows=2,return_fig=True)
            allaxes = dot12.get_figure().get_axes()

            
            allaxes[0].set_title("All",fontsize=20)
            allaxes[0].set_ylabel("old",fontsize=20)
            allaxes[0].set_xlabel("")
            allaxes[1].set_title("")
            allaxes[1].set_ylabel("young",fontsize=20)
            allaxes[1].set_xlabel("")  
            #allaxes[2].set_visible(False)
            #allaxes[3].set_visible(False)          
            allaxes[2].remove() #.set_visible(False)
            allaxes[3].remove() #set_visible(False)          
            
            ##########            

            ###### SWAP THE PLOTS
            # pos1 = allaxes[0].get_position()
            # allaxes[0].set_position(allaxes[1].get_position())
            # allaxes[1].set_position(pos1)   
            # pos1 = allaxes[2].get_position()         
            # allaxes[2].set_position(allaxes[3].get_position())
            # allaxes[3].set_position(pos1)   
            #######

            fig_width, fig_height = dot12.get_size_inches()
            st.pyplot(dot12)   
        with cc2:
            adata_Ast = st.session_state['adata_annot'][st.session_state['adata_annot'].obs['new_anno']==selected_celltype]
            #### New
            dot13=pg.scatter_groups(adata_Ast, attr=selected_gene, basis='umap', groupby='Age_group', cmap='BuPu', vmin=0, vmax=6,show_full=False,nrows=2,return_fig=True,legend_loc='right margin')
            allaxes1 = dot13.get_figure().get_axes()
            allaxes1[0].set_title("")
            allaxes1[0].set_title(selected_celltype,fontsize=20)
            allaxes1[0].set_xlabel("")
            allaxes1[0].set_ylabel("")
            allaxes1[1].set_title("")
            allaxes1[1].set_xlabel("")            
            allaxes1[1].set_ylabel("")  
            
            chartBox1 = allaxes1[2].get_position()
            chartBox2 = allaxes1[3].get_position()
            
            
            allaxes1[2].set_position([chartBox1.x0+.2, chartBox1.y0,chartBox1.width,chartBox1.height]) 
            allaxes1[3].set_position([chartBox2.x0+.2, chartBox2.y0,chartBox2.width,chartBox2.height]) 
            
            #dot13.set_size_inches(fig_width+5, fig_height+5)
            
                      
            ####
            st.pyplot(dot13)
#with tab2:
elif opt_selected == 'Age associations for Multiple genes':
    #set plot theme
    blupink = sns.palplot(sns.diverging_palette(h_neg=234,h_pos=342,n=9,s=75,l=30,sep=10,center='light'))
    sns.set_context("paper", font_scale=1)
    cmap = sns.diverging_palette(h_neg=234,h_pos=342,n=9,s=75,l=30,sep=7,center='light', as_cmap=True)
    with st.form(key='multi_genes_form'):
        c1, c2= st.columns([9.9,.1])
        with c1:
            multi_genes = st.multiselect(
            'Select Genes List',
            st.session_state['genes_list'])
        Updated_tab2=st.form_submit_button(label = 'Show GeneSet Results')
    if not isinstance(multi_genes, type(None)) and Updated_tab2:
        multi_genes = np.sort(multi_genes)

        #####NEW CODE
        tit="expression per cell type"
        #st.write(tit)
        html_str1 = f"""
            <style>
            p.a {{
            font: bold {16}px Courier;
            text-align: center;
            }}
            </style>
            <p class="a">{tit}</p>
            """
        
        cc1,cc2=st.columns([1,1])
        with cc1:
            try:
                
                dot21=pg.dotplot(st.session_state['adata_annot'], genes=multi_genes, groupby='new_anno',switch_axes=True,return_fig=True,cmap='BuPu')
                dot21.set_figheight(len(multi_genes)*.5)
                allaxes21 = dot21.get_figure().get_axes()
                #allaxes21[0].set_title("expression per cell type")
                allaxes21[0].set_xlabel("")

                st.markdown(html_str1, unsafe_allow_html=True)
                st.pyplot(dot21)
            except:
                st.write("**An exception has occurred, Please check the GeneSet**")

        with cc2:        
            # now cluster_map
            celltype_DAGS = st.session_state['cluster_table'][st.session_state['cluster_table'].eval("type.str.endswith('cell_type').values")]
            celltype_DAGS = celltype_DAGS.pivot(index='feature', columns='tissue')['estimate']
            #replace NaN with zeroes
            celltype_DAGS.fillna(0, inplace=True)
            
            #query which cell type DAGs are in ad gene set
            celltype_ad_genes = celltype_DAGS.loc[celltype_DAGS.index.isin(multi_genes)]
            lst=list(celltype_ad_genes.index)
            
            tit="age association per cell type"
            #st.write(tit)
            html_str1 = f"""
                <style>
                p.a {{
                font: bold {16}px Courier;
                text-align: center;
                }}
                </style>
                <p class="a">{tit}</p>
                """

            st.markdown(html_str1, unsafe_allow_html=True)
            
            if celltype_ad_genes.shape[0] > 1:
                kws = dict(cbar_kws=dict(label='coefficient estimates', orientation='vertical',shrink='.05'))
                with sns.axes_style({"axes.edgecolor": "black"}):                    
                    if len(lst)>50:
                        g = sns.clustermap(celltype_ad_genes, figsize=(6,len(lst)*.2), linewidth=0.05, cmap=cmap, col_cluster=True, dendrogram_ratio=0.1, row_cluster=True, vmin=-1, vmax=1, center= 0, linecolor= 'white', clip_on=False,
                                            xticklabels=True, yticklabels=True, square=False,cbar_kws={"orientation": "vertical","label": "coefficient estimates"})

                        x0, _y0, _w, _h = g.cbar_pos
                        g.ax_cbar.set_position([x0+.95, 0.75, .02, len(lst)*.0005])
                    else:
                        g = sns.clustermap(celltype_ad_genes, figsize=(6,6), linewidth=0.05, cmap=cmap, col_cluster=True, dendrogram_ratio=0.1, row_cluster=True, vmin=-1, vmax=1, center= 0, linecolor= 'white', clip_on=False,
                                            xticklabels=True, yticklabels=True, square=False,cbar_kws={"orientation": "vertical","label": "coefficient estimates"})

                        x0, _y0, _w, _h = g.cbar_pos
                        
                    g.ax_cbar.set_position([x0+.95, 0.6, .02, .25])
                    #g.ax_cbar.set_title('coefficient estimates')
                g.ax_cbar.tick_params(axis='x', length=10)
                ax = g.ax_heatmap
                #ax.title("age association per cell type")
                ax.set_ylabel("")
                ax.set_xlabel("") 
                #ax.set_title("age association per cell type")
                st.pyplot(g)
                disp_table(celltype_ad_genes)
                st.dataframe(celltype_ad_genes)
                
                #
            else:
                st.write('**Got Empty Data Set (from aging.glmmtmb_age_diffs_fdr.csv), Please select a different set of genes**')
        ######END NEW CODE
#with tab3:
elif opt_selected == 'Age associations with GoTerms':
    #set plot theme
    blupink = sns.palplot(sns.diverging_palette(h_neg=234,h_pos=342,n=9,s=75,l=30,sep=10,center='light'))
    sns.set_context("paper", font_scale=1)
    cmap = sns.diverging_palette(h_neg=234,h_pos=342,n=9,s=75,l=30,sep=7,center='light', as_cmap=True)

    with st.form(key='GoDatabase_form'):

        selected_go_database = st.selectbox(
        'Please select Pathway Database',st.session_state['go_table'])
        selected_pway_data=st.session_state['all_pwaydata'][selected_go_database]
        
        change = st.form_submit_button("Updata")
        c1, c2 = st.columns([9.999,.001])
        with c1:
            selected_pway_data=st.session_state['all_pwaydata'][selected_go_database]
            #st.write(selected_go_database)
            
            go_term = st.selectbox(
            'Select GO Term',
            list(selected_pway_data.columns))
 
        Updated_tab3=st.form_submit_button(label = 'Show Pathway Results')

    #if not isinstance(multi_genes, type(None)) and Updated_tab3:# and Updated_tab4:
    if not isinstance(go_term, type(None)) and Updated_tab3:# and Updated_tab4:

        multi_genes = [x for x in selected_pway_data[go_term] if str(x) != 'nan']
        multi_genes = list(set(multi_genes))
        multi_genes=np.sort(multi_genes)
        #####NEW CODE
        cc1,cc2=st.columns([1,1])
        with cc1:

            st.markdown('**Pathway Database:** '+selected_go_database) #+'\n**Pathway Selected:** '+go_term)
            st.markdown('**Pathway Selected:** '+go_term)
            fig = plt.figure(figsize=(1, 1))
            try:
                dot21=pg.dotplot(st.session_state['adata_annot'], genes=multi_genes, groupby='new_anno',switch_axes=True,return_fig=True,cmap='BuPu')#, dpi=300.0)
                dot21.set_figheight(len(multi_genes)*.3)
                allaxes21 = dot21.get_figure().get_axes()
                allaxes21[0].set_title("expression per cell type")
                allaxes21[0].set_xlabel("")
                st.pyplot(dot21)
            except:
                st.write("**An exception has occurred, Please check the GeneSet**")

        with cc2:
        # now cluster_map
            celltype_DAGS = st.session_state['cluster_table'][st.session_state['cluster_table'].eval("type.str.endswith('cell_type').values")]
            celltype_DAGS = celltype_DAGS.pivot(index='feature', columns='tissue')['estimate']
            #replace NaN with zeroes
            celltype_DAGS.fillna(0, inplace=True)
            
            #query which cell type DAGs are in ad gene set
            celltype_ad_genes = celltype_DAGS.loc[celltype_DAGS.index.isin(multi_genes)]
            
            st.markdown('Please note that **number of Genes in Pathway are:** '+str(len(multi_genes))) #+' \nAnd Genes **in aging.glmmtmb_age_diffs_fdr.csv file are:** '+str(len(celltype_ad_genes))) 
            st.markdown('Genes **in aging.glmmtmb_age_diffs_fdr.csv file are:** '+str(len(celltype_ad_genes))) 
            #st.write('**Common List Is:** ')
            tit="age association per cell type"
            #st.write(tit)
            html_str1 = f"""
                <style>
                p.a {{
                font: bold {16}px Courier;
                text-align: center;
                }}
                </style>
                <p class="a">{tit}</p>
                """

            
            
            lst=list(celltype_ad_genes.index)
            if celltype_ad_genes.shape[0] > 1:   
                st.markdown(html_str1, unsafe_allow_html=True)
                kws = dict(cbar_kws=dict(label='coefficient estimates', orientation='vertical',shrink='.05'))
                with sns.axes_style({"axes.edgecolor": "black"}):
                    if len(lst)>50:
                        g = sns.clustermap(celltype_ad_genes, figsize=(6,len(lst)*.2), linewidth=0.05, cmap=cmap, col_cluster=True, dendrogram_ratio=0.1, row_cluster=True, vmin=-1, vmax=1, center= 0, linecolor= 'white', clip_on=False,
                                            xticklabels=True, yticklabels=True, square=False,cbar_kws={"orientation": "vertical","label": "coefficient estimates"})

                        x0, _y0, _w, _h = g.cbar_pos
                            #g.ax_cbar.set_position([x0+.9, 0.3, g.ax_row_dendrogram.get_position().width, 0.5])
                        g.ax_cbar.set_position([x0+.95, 0.75, .02, len(lst)*.0005])
                    else:
                        g = sns.clustermap(celltype_ad_genes, figsize=(6,6), linewidth=0.05, cmap=cmap, col_cluster=True, dendrogram_ratio=0.1, row_cluster=True, vmin=-1, vmax=1, center= 0, linecolor= 'white', clip_on=False,
                                            xticklabels=True, yticklabels=True, square=False,cbar_kws={"orientation": "vertical","label": "coefficient estimates"})

                        x0, _y0, _w, _h = g.cbar_pos
                            #g.ax_cbar.set_position([x0+.9, 0.3, g.ax_row_dendrogram.get_position().width, 0.5])
                        g.ax_cbar.set_position([x0+.95, 0.6, .02, .25])
                    #g.ax_cbar.set_title('coefficient estimates')
                g.ax_cbar.tick_params(axis='x', length=10)
                ax = g.ax_heatmap
                #ax.title("age association per cell type")
                ax.set_ylabel("")
                ax.set_xlabel("") 
                    #ax.set_title("age association per cell type")
                #g.fig.suptitle('age association per cell type') 
                st.pyplot(g)
                
                disp_table(celltype_ad_genes)
                st.dataframe(celltype_ad_genes)
                

            else:
                st.write('**Got Empty Data Set (aging.glmmtmb_age_diffs_fdr.csv), Please select a different set of genes**')
        ######END NEW CODE
    
#with readme:
else:
    expander = st.expander("How to use this app")   
    #st.header('How to use this app')
    expander.markdown('This app consists of 3-Tabs')
    expander.markdown('**Tab1: Gene Expression by CellType:** Two dropdown lists are provided where user can select a gene and celltype of interest. After making selection, Please press Go Button')
    expander.markdown('**Tabe2: Age assosciation for Multiple genes: ** A multiselect drop down list is provided to select geens of interest. A dotplot showing expression per cell type for the selected genes is shown on the left. Right plot shows age association per cell type as clustermap for the selected genes.')
    expander.markdown('**Tab3: Age assosciations with GoTerms: Here user can select a pathway database from a dropdown list of pathway databaass. Once a pathway database is selected (after pressing Update button), another drowdown list shows all pathwys(GoTerms) for the selected database. After selecting a pathway of choice, Please press Show Pathway Results button.')
    expander.markdown('**README: This tab**')
    
    expander1 = st.expander('Introduction')
    
    expander1.markdown(
        """ Coming Soon.
            """
            )
    expander1.markdown('Coming soon')
    expander1.markdown('- ')
    expander1.markdown('- ')
    expander1.markdown('- ')
    expander1.markdown('Coming soon')

css = '''
<style>
    .stTabs [data-baseweb="tab-list"] button [data-testid="stMarkdownContainer"] p {
    font-size:1.5rem;
    }
</style>
'''

st.markdown(css, unsafe_allow_html=True)