Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import RobertaTokenizer, RobertaForSequenceClassification
|
| 5 |
+
|
| 6 |
+
# Load model
|
| 7 |
+
model_name = "syedkhalid076/RoBERTa-Sentimental-Analysis-Model"
|
| 8 |
+
tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
| 9 |
+
model = RobertaForSequenceClassification.from_pretrained(model_name)
|
| 10 |
+
model.eval()
|
| 11 |
+
|
| 12 |
+
# Function to predict sentiment for a single sentence
|
| 13 |
+
def predict_sentiment(sentence):
|
| 14 |
+
inputs = tokenizer(sentence, return_tensors="pt", max_length=512, truncation=True)
|
| 15 |
+
outputs = model(**inputs)
|
| 16 |
+
logits = outputs.logits.detach().cpu().numpy()
|
| 17 |
+
sentiment = "positive" if logits[0][1] > logits[0][0] else "negative"
|
| 18 |
+
return sentiment
|
| 19 |
+
|
| 20 |
+
# Function to process CSV file and predict sentiment for each row
|
| 21 |
+
def process_csv(file):
|
| 22 |
+
df = pd.read_csv(file)
|
| 23 |
+
df['Sentiment'] = df['Text'].apply(predict_sentiment)
|
| 24 |
+
return df
|
| 25 |
+
|
| 26 |
+
# Streamlit app
|
| 27 |
+
def main():
|
| 28 |
+
st.title("Sentiment Analysis App")
|
| 29 |
+
st.write("Write a sentence or upload a CSV file to analyze sentiment.")
|
| 30 |
+
|
| 31 |
+
option = st.radio("Choose input type:", ("Write a sentence", "Upload a CSV file"))
|
| 32 |
+
|
| 33 |
+
if option == "Write a sentence":
|
| 34 |
+
sentence = st.text_input("Enter a sentence:")
|
| 35 |
+
if st.button("Analyze"):
|
| 36 |
+
sentiment = predict_sentiment(sentence)
|
| 37 |
+
st.write("Sentiment:", sentiment)
|
| 38 |
+
|
| 39 |
+
elif option == "Upload a CSV file":
|
| 40 |
+
file = st.file_uploader("Upload CSV file", type=['csv'])
|
| 41 |
+
if file is not None:
|
| 42 |
+
df = process_csv(file)
|
| 43 |
+
st.write(df)
|
| 44 |
+
|
| 45 |
+
if __name__ == '__main__':
|
| 46 |
+
main()
|