Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
from transformers import RobertaTokenizer, RobertaForSequenceClassification
|
5 |
+
|
6 |
+
# Load model
|
7 |
+
model_name = "syedkhalid076/RoBERTa-Sentimental-Analysis-Model"
|
8 |
+
tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
9 |
+
model = RobertaForSequenceClassification.from_pretrained(model_name)
|
10 |
+
model.eval()
|
11 |
+
|
12 |
+
# Function to predict sentiment for a single sentence
|
13 |
+
def predict_sentiment(sentence):
|
14 |
+
inputs = tokenizer(sentence, return_tensors="pt", max_length=512, truncation=True)
|
15 |
+
outputs = model(**inputs)
|
16 |
+
logits = outputs.logits.detach().cpu().numpy()
|
17 |
+
sentiment = "positive" if logits[0][1] > logits[0][0] else "negative"
|
18 |
+
return sentiment
|
19 |
+
|
20 |
+
# Function to process CSV file and predict sentiment for each row
|
21 |
+
def process_csv(file):
|
22 |
+
df = pd.read_csv(file)
|
23 |
+
df['Sentiment'] = df['Text'].apply(predict_sentiment)
|
24 |
+
return df
|
25 |
+
|
26 |
+
# Streamlit app
|
27 |
+
def main():
|
28 |
+
st.title("Sentiment Analysis App")
|
29 |
+
st.write("Write a sentence or upload a CSV file to analyze sentiment.")
|
30 |
+
|
31 |
+
option = st.radio("Choose input type:", ("Write a sentence", "Upload a CSV file"))
|
32 |
+
|
33 |
+
if option == "Write a sentence":
|
34 |
+
sentence = st.text_input("Enter a sentence:")
|
35 |
+
if st.button("Analyze"):
|
36 |
+
sentiment = predict_sentiment(sentence)
|
37 |
+
st.write("Sentiment:", sentiment)
|
38 |
+
|
39 |
+
elif option == "Upload a CSV file":
|
40 |
+
file = st.file_uploader("Upload CSV file", type=['csv'])
|
41 |
+
if file is not None:
|
42 |
+
df = process_csv(file)
|
43 |
+
st.write(df)
|
44 |
+
|
45 |
+
if __name__ == '__main__':
|
46 |
+
main()
|