text
Browse files
app.py
CHANGED
@@ -1,70 +1,10 @@
|
|
1 |
from huggingface_hub import InferenceClient
|
2 |
-
from transformers import pipeline
|
3 |
import gradio as gr
|
4 |
-
import edge_tts
|
5 |
-
import tempfile
|
6 |
-
import os
|
7 |
-
from streaming_stt_nemo import Model
|
8 |
-
import torch
|
9 |
-
import random
|
10 |
-
|
11 |
-
# Initialize the inference client with your Hugging Face token
|
12 |
-
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1")
|
13 |
-
# Initialize the ASR pipeline
|
14 |
-
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
15 |
-
|
16 |
-
def speech_to_text(speech):
|
17 |
-
"""Converts speech to text using the ASR pipeline."""
|
18 |
-
# breakpoint()
|
19 |
-
return asr(speech)["text"]
|
20 |
-
|
21 |
-
|
22 |
-
def classify_mood(input_string):
|
23 |
-
"""Classifies the mood based on keywords in the input string."""
|
24 |
-
input_string = input_string.lower()
|
25 |
-
mood_words = {"happy", "sad", "instrumental", "party"}
|
26 |
-
for word in mood_words:
|
27 |
-
if word in input_string:
|
28 |
-
return word, True
|
29 |
-
return None, False
|
30 |
|
31 |
-
|
32 |
-
prompt, history, temperature=0.1, max_new_tokens=2048, top_p=0.8, repetition_penalty=1.0,
|
33 |
-
):
|
34 |
-
temperature = float(temperature)
|
35 |
-
if temperature < 1e-2:
|
36 |
-
temperature = 1e-2
|
37 |
-
top_p = float(top_p)
|
38 |
-
|
39 |
-
generate_kwargs = dict(
|
40 |
-
temperature=temperature,
|
41 |
-
max_new_tokens=max_new_tokens,
|
42 |
-
top_p=top_p,
|
43 |
-
repetition_penalty=repetition_penalty,
|
44 |
-
do_sample=True,
|
45 |
-
seed=42,
|
46 |
-
)
|
47 |
-
|
48 |
-
formatted_prompt = format_prompt(prompt, history)
|
49 |
-
|
50 |
-
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
51 |
-
output = ""
|
52 |
-
|
53 |
-
for response in stream:
|
54 |
-
output += response.token.text
|
55 |
-
mood, is_classified = classify_mood(output)
|
56 |
-
# Print the chatbot's response
|
57 |
-
if is_classified:
|
58 |
-
print("Chatbot:", mood.capitalize())
|
59 |
-
playlist_message = f"Playing {mood.capitalize()} playlist for you!"
|
60 |
-
output=playlist_message
|
61 |
-
return output
|
62 |
-
# yield output
|
63 |
-
return output
|
64 |
|
65 |
def format_prompt(message, history):
|
66 |
-
|
67 |
-
fixed_prompt = """
|
68 |
You are a smart mood analyser, who determines user mood. Based on the user input, classify the mood of the user into one of the four moods {Happy, Sad, Instrumental, Party}. If you are finding it difficult to classify into one of these four moods, keep the conversation going on until we classify the user’s mood. Return a single-word reply from one of the options if you have classified. Suppose you classify a sentence as happy, then just respond with "happy".
|
69 |
|
70 |
Note: Do not write anything else other than the classified mood if classified.
|
@@ -233,41 +173,66 @@ def format_prompt(message, history):
|
|
233 |
|
234 |
User: Lets turn up the music and have some fun!
|
235 |
LLM Response: Party
|
236 |
-
"""
|
237 |
-
prompt = f"{fixed_prompt}"
|
238 |
for user_prompt, bot_response in history:
|
239 |
-
prompt += f"\
|
|
|
|
|
240 |
prompt += f"\nUser: {message}\nLLM Response:"
|
|
|
241 |
return prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
-
|
244 |
-
"""Processes speech input to text and then calls generate."""
|
245 |
-
text = speech_to_text(speech_file)
|
246 |
-
reply = generate(text, history="")
|
247 |
-
communicate = edge_tts.Communicate(reply)
|
248 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
249 |
-
tmp_path = tmp_file.name
|
250 |
-
await communicate.save(tmp_path)
|
251 |
-
yield tmp_path
|
252 |
-
DESCRIPTION = """ # <center><b>Mood-Based Music Recommender⚡</b></center>
|
253 |
-
### <center>Hi! I'm a music recommender app.
|
254 |
-
### <center>What kind of music do you want to listen to, or how are you feeling today?</center>
|
255 |
-
"""
|
256 |
-
# Gradio interface setup
|
257 |
-
with gr.Blocks(css="style.css") as demo:
|
258 |
-
gr.Markdown(DESCRIPTION)
|
259 |
-
with gr.Row():
|
260 |
-
input = gr.Audio(label="User", sources="microphone", type="filepath", waveform_options=False)
|
261 |
-
output = gr.Audio(label="AI", type="filepath",
|
262 |
-
interactive=False,
|
263 |
-
autoplay=True,
|
264 |
-
elem_classes="audio")
|
265 |
-
gr.Interface(
|
266 |
-
batch=True,
|
267 |
-
max_batch_size=10,
|
268 |
-
fn=process_speech,
|
269 |
-
inputs=[input],
|
270 |
-
outputs=[output], live=True)
|
271 |
-
|
272 |
-
if __name__ == "__main__":
|
273 |
-
demo.queue(max_size=200).launch()
|
|
|
1 |
from huggingface_hub import InferenceClient
|
|
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def format_prompt(message, history):
|
7 |
+
fixed_prompt= """
|
|
|
8 |
You are a smart mood analyser, who determines user mood. Based on the user input, classify the mood of the user into one of the four moods {Happy, Sad, Instrumental, Party}. If you are finding it difficult to classify into one of these four moods, keep the conversation going on until we classify the user’s mood. Return a single-word reply from one of the options if you have classified. Suppose you classify a sentence as happy, then just respond with "happy".
|
9 |
|
10 |
Note: Do not write anything else other than the classified mood if classified.
|
|
|
173 |
|
174 |
User: Lets turn up the music and have some fun!
|
175 |
LLM Response: Party
|
176 |
+
"""
|
177 |
+
prompt = f"<s>{fixed_prompt}"
|
178 |
for user_prompt, bot_response in history:
|
179 |
+
prompt += f"\n User:{user_prompt}\n LLM Response:{bot_response}"
|
180 |
+
|
181 |
+
# Add the current message
|
182 |
prompt += f"\nUser: {message}\nLLM Response:"
|
183 |
+
# breakpoint()
|
184 |
return prompt
|
185 |
+
def classify_mood(input_string):
|
186 |
+
input_string = input_string.lower()
|
187 |
+
mood_words = {"happy", "sad", "instrumental", "party"}
|
188 |
+
for word in mood_words:
|
189 |
+
if word in input_string:
|
190 |
+
return word, True
|
191 |
+
return None, False
|
192 |
+
|
193 |
+
def generate(
|
194 |
+
prompt, history, temperature=0.1, max_new_tokens=2048, top_p=0.8, repetition_penalty=1.0,
|
195 |
+
):
|
196 |
+
temperature = float(temperature)
|
197 |
+
if temperature < 1e-2:
|
198 |
+
temperature = 1e-2
|
199 |
+
top_p = float(top_p)
|
200 |
+
|
201 |
+
generate_kwargs = dict(
|
202 |
+
temperature=temperature,
|
203 |
+
max_new_tokens=max_new_tokens,
|
204 |
+
top_p=top_p,
|
205 |
+
repetition_penalty=repetition_penalty,
|
206 |
+
do_sample=True,
|
207 |
+
seed=42,
|
208 |
+
)
|
209 |
+
|
210 |
+
formatted_prompt = format_prompt(prompt, history)
|
211 |
+
breakpoint()
|
212 |
+
|
213 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
214 |
+
output = ""
|
215 |
+
|
216 |
+
for response in stream:
|
217 |
+
output += response.token.text
|
218 |
+
mood, is_classified = classify_mood(output)
|
219 |
+
# Print the chatbot's response
|
220 |
+
if is_classified:
|
221 |
+
print("Chatbot:", mood.capitalize())
|
222 |
+
playlist_message = f"Playing {mood.capitalize()} playlist for you!"
|
223 |
+
output=playlist_message
|
224 |
+
return output
|
225 |
+
# yield output
|
226 |
+
return output
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
demo = gr.ChatInterface (fn=generate,
|
231 |
+
title="Mood-Based Music Recommender",
|
232 |
+
retry_btn=None,
|
233 |
+
undo_btn=None,
|
234 |
+
clear_btn=None,
|
235 |
+
description="<span style='font-size: larger; font-weight: bold;'>Hi! I'm a music recommender app. What kind of music do you want to listen to, or how are you feeling today?</span>",
|
236 |
+
)
|
237 |
|
238 |
+
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|