ClickChoice / app.py
szili2011's picture
Create app.py
c07926e verified
import gradio as gr
import torch
from transformers import ViTFeatureExtractor, ViTForImageClassification, pipeline
from PIL import Image
import easyocr
from aesthetic_score import AestheticScorer
# Initialize models
# Vision Transformer for Emotion Detection
feature_extractor = ViTFeatureExtractor.from_pretrained("nateraw/vit-base-beauty")
model = ViTForImageClassification.from_pretrained("nateraw/vit-base-beauty")
emotion_detector = pipeline("image-classification", model=model, feature_extractor=feature_extractor)
# OCR for Text Detection
reader = easyocr.Reader(['en'])
# Aesthetic Scoring Model (Placeholder)
aesthetic_scorer = AestheticScorer()
# Function to analyze a single thumbnail
def analyze_single_thumbnail(image):
# Text detection using OCR
ocr_result = reader.readtext(image)
text_detected = " ".join([item[1] for item in ocr_result]) if ocr_result else "No text found"
# Emotion detection for overall appeal
emotions = emotion_detector(image)
main_emotion = max(emotions, key=lambda x: x['score'])['label'] if emotions else "Unknown"
# Aesthetic scoring
aesthetic_score = aesthetic_scorer.score(image)
return {
"Detected Text": text_detected,
"Emotion Detected": main_emotion,
"Aesthetic Score": aesthetic_score,
}
# Function to compare two thumbnails
def compare_thumbnails(image1, image2):
result1 = analyze_single_thumbnail(image1)
result2 = analyze_single_thumbnail(image2)
# Determine which thumbnail might perform better based on scores
if result1["Aesthetic Score"] > result2["Aesthetic Score"]:
better_thumbnail = "Thumbnail 1 is likely better."
elif result2["Aesthetic Score"] > result1["Aesthetic Score"]:
better_thumbnail = "Thumbnail 2 is likely better."
else:
better_thumbnail = "Both thumbnails have similar appeal."
return result1, result2, better_thumbnail
# Gradio Interface
iface = gr.Interface(
fn=compare_thumbnails,
inputs=[gr.Image(type="pil"), gr.Image(type="pil")],
outputs=[
gr.JSON(label="Thumbnail 1 Analysis"),
gr.JSON(label="Thumbnail 2 Analysis"),
gr.Textbox(label="Comparison Result"),
],
title="YouTube Thumbnail Comparator",
description="Upload two thumbnails to compare their effectiveness based on detected text, emotions, and aesthetic score.",
)
iface.launch()