import gradio as gr import torch from transformers import ViTFeatureExtractor, ViTForImageClassification, pipeline from PIL import Image import easyocr from aesthetic_score import AestheticScorer # Initialize models # Vision Transformer for Emotion Detection feature_extractor = ViTFeatureExtractor.from_pretrained("nateraw/vit-base-beauty") model = ViTForImageClassification.from_pretrained("nateraw/vit-base-beauty") emotion_detector = pipeline("image-classification", model=model, feature_extractor=feature_extractor) # OCR for Text Detection reader = easyocr.Reader(['en']) # Aesthetic Scoring Model (Placeholder) aesthetic_scorer = AestheticScorer() # Function to analyze a single thumbnail def analyze_single_thumbnail(image): # Text detection using OCR ocr_result = reader.readtext(image) text_detected = " ".join([item[1] for item in ocr_result]) if ocr_result else "No text found" # Emotion detection for overall appeal emotions = emotion_detector(image) main_emotion = max(emotions, key=lambda x: x['score'])['label'] if emotions else "Unknown" # Aesthetic scoring aesthetic_score = aesthetic_scorer.score(image) return { "Detected Text": text_detected, "Emotion Detected": main_emotion, "Aesthetic Score": aesthetic_score, } # Function to compare two thumbnails def compare_thumbnails(image1, image2): result1 = analyze_single_thumbnail(image1) result2 = analyze_single_thumbnail(image2) # Determine which thumbnail might perform better based on scores if result1["Aesthetic Score"] > result2["Aesthetic Score"]: better_thumbnail = "Thumbnail 1 is likely better." elif result2["Aesthetic Score"] > result1["Aesthetic Score"]: better_thumbnail = "Thumbnail 2 is likely better." else: better_thumbnail = "Both thumbnails have similar appeal." return result1, result2, better_thumbnail # Gradio Interface iface = gr.Interface( fn=compare_thumbnails, inputs=[gr.Image(type="pil"), gr.Image(type="pil")], outputs=[ gr.JSON(label="Thumbnail 1 Analysis"), gr.JSON(label="Thumbnail 2 Analysis"), gr.Textbox(label="Comparison Result"), ], title="YouTube Thumbnail Comparator", description="Upload two thumbnails to compare their effectiveness based on detected text, emotions, and aesthetic score.", ) iface.launch()