File size: 2,410 Bytes
4908947
a27bf5b
 
dd329e3
4908947
848bd00
aa3fa6d
a27bf5b
dd329e3
4908947
a27bf5b
4908947
a27bf5b
dd329e3
a27bf5b
007a1b7
a27bf5b
 
 
 
007a1b7
a27bf5b
4908947
a27bf5b
4908947
a27bf5b
 
007a1b7
a27bf5b
 
39e2ba0
a27bf5b
4908947
848bd00
 
39e2ba0
a27bf5b
007a1b7
7b2659c
007a1b7
7b2659c
ceea695
007a1b7
39e2ba0
5e7000d
007a1b7
a27bf5b
4908947
 
 
fee787d
7b2659c
4908947
 
80acfa0
4908947
 
dd329e3
007a1b7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import gradio as gr
import numpy as np
import librosa

# Function to load audio using librosa
def load_audio(file):
    audio, sr = librosa.load(file, sr=None)  # Load the audio file
    return audio, sr

# Function to get a relevant audio segment based on onset detection
def get_segment(audio, sr):
    onset_env = librosa.onset.onset_strength(y=audio, sr=sr)
    onset_frames = librosa.onset.onset_detect(onset_envelope=onset_env, sr=sr, backtrack=True)

    if len(onset_frames) == 0:
        return audio[:2048], sr  # Return the first 2048 samples if no onsets

    # Calculate energy over time
    energy = np.array([np.sum(np.abs(audio[i:i + 2048]**2)) for i in range(0, len(audio), 2048)])
    
    # Threshold for musical relevance
    energy_threshold = np.mean(energy) + np.std(energy)
    relevant_onsets = [f for f in onset_frames if f < len(energy) and energy[f] > energy_threshold]

    start_frame = relevant_onsets[0] if relevant_onsets else onset_frames[0]
    start_sample = librosa.frames_to_samples(start_frame)

    segment_length = sr  # Length of segment in samples (1 second)
    end_sample = min(start_sample + segment_length, len(audio))

    return audio[start_sample:end_sample], sr

# Function to extend music by adding silence
def extend_music(file, added_minutes):
    audio, sr = load_audio(file)
    segment, sr = get_segment(audio, sr)

    # Calculate additional samples
    additional_samples = int(added_minutes * 60 * sr)
    extended_audio = np.concatenate([segment, np.zeros(additional_samples)])  # Add silence

    # Normalize audio to the range of [-1, 1]
    extended_audio = extended_audio / np.max(np.abs(extended_audio)) if np.max(np.abs(extended_audio)) > 0 else extended_audio

    # Return the audio as a NumPy array (float32) and the sample rate as an integer
    return extended_audio.astype(np.float32), sr  # Ensure it's a float32 NumPy array

# Gradio UI setup
with gr.Blocks() as app:
    gr.Markdown("# Audio Extender")
    
    audio_input = gr.Audio(type="filepath", label="Upload Audio File")
    added_minutes = gr.Slider(minimum=0, maximum=10, label="Additional Minutes")
    audio_output = gr.Audio(type="numpy", label="Extended Audio")
    
    submit_button = gr.Button("Extend Audio")
    submit_button.click(extend_music, inputs=[audio_input, added_minutes], outputs=audio_output)

# Launch the app with a public link
app.launch(share=True)