Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from deepface import DeepFace
|
3 |
+
import cv2
|
4 |
+
import mediapipe as mp
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# Initialize MediaPipe Pose for body bounding box detection
|
10 |
+
mp_pose = mp.solutions.pose
|
11 |
+
|
12 |
+
def analyze_images(img1, img2):
|
13 |
+
# Face comparison with DeepFace
|
14 |
+
face_result = DeepFace.verify(img1, img2, model_name='VGG-Face')
|
15 |
+
is_same_person = face_result['verified']
|
16 |
+
similarity_score = face_result['distance']
|
17 |
+
|
18 |
+
# Convert images to OpenCV format
|
19 |
+
img1_cv = cv2.cvtColor(np.array(img1), cv2.COLOR_RGB2BGR)
|
20 |
+
img2_cv = cv2.cvtColor(np.array(img2), cv2.COLOR_RGB2BGR)
|
21 |
+
|
22 |
+
# Body analysis with MediaPipe
|
23 |
+
def get_body_info(image):
|
24 |
+
with mp_pose.Pose(static_image_mode=True) as pose:
|
25 |
+
results = pose.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
26 |
+
if results.pose_landmarks:
|
27 |
+
landmarks = results.pose_landmarks.landmark
|
28 |
+
# Calculate bounding box height and width
|
29 |
+
x_values = [landmark.x for landmark in landmarks]
|
30 |
+
y_values = [landmark.y for landmark in landmarks]
|
31 |
+
width = max(x_values) - min(x_values)
|
32 |
+
height = max(y_values) - min(y_values)
|
33 |
+
aspect_ratio = height / width if width > 0 else 0
|
34 |
+
return aspect_ratio, width, height
|
35 |
+
return None, None, None
|
36 |
+
|
37 |
+
aspect_ratio1, width1, height1 = get_body_info(img1_cv)
|
38 |
+
aspect_ratio2, width2, height2 = get_body_info(img2_cv)
|
39 |
+
|
40 |
+
# Create a chart to display face and body similarities
|
41 |
+
labels = ['Face Similarity', 'Body Aspect Ratio', 'Body Width', 'Body Height']
|
42 |
+
values1 = [similarity_score, aspect_ratio1, width1, height1]
|
43 |
+
values2 = [similarity_score, aspect_ratio2, width2, height2]
|
44 |
+
|
45 |
+
x = np.arange(len(labels))
|
46 |
+
width = 0.35
|
47 |
+
|
48 |
+
fig, ax = plt.subplots()
|
49 |
+
ax.bar(x - width/2, values1, width, label='Image 1')
|
50 |
+
ax.bar(x + width/2, values2, width, label='Image 2')
|
51 |
+
|
52 |
+
ax.set_ylabel('Scores')
|
53 |
+
ax.set_title('Comparison of Face and Body Features')
|
54 |
+
ax.set_xticks(x)
|
55 |
+
ax.set_xticklabels(labels)
|
56 |
+
ax.legend()
|
57 |
+
|
58 |
+
# Save and return the chart
|
59 |
+
plt.tight_layout()
|
60 |
+
plt_path = "comparison_chart.png"
|
61 |
+
plt.savefig(plt_path)
|
62 |
+
plt.close(fig)
|
63 |
+
|
64 |
+
return is_same_person, plt_path
|
65 |
+
|
66 |
+
# Set up Gradio interface
|
67 |
+
iface = gr.Interface(
|
68 |
+
fn=analyze_images,
|
69 |
+
inputs=[gr.inputs.Image(type="pil"), gr.inputs.Image(type="pil")],
|
70 |
+
outputs=[gr.outputs.Textbox(label="Same Person?"), gr.outputs.Image(label="Comparison Chart")],
|
71 |
+
title="Face and Body Similarity Analyzer",
|
72 |
+
description="Upload two images to analyze if they contain the same person and compare body features."
|
73 |
+
)
|
74 |
+
|
75 |
+
iface.launch()
|