import gradio as gr from deepface import DeepFace import cv2 import mediapipe as mp import matplotlib.pyplot as plt from PIL import Image import numpy as np import tempfile # Initialize MediaPipe Pose for body bounding box detection mp_pose = mp.solutions.pose def analyze_images(img1, img2): # Option 1: Convert PIL images to NumPy arrays img1_array = np.array(img1) img2_array = np.array(img2) # Option 2: Save images temporarily as JPEG files with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file1: img1.save(temp_file1, format='JPEG') img1_path = temp_file1.name with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file2: img2.save(temp_file2, format='JPEG') img2_path = temp_file2.name # Face comparison with DeepFace, enforce_detection set to False face_result = DeepFace.verify(img1_path, img2_path, model_name='VGG-Face', enforce_detection=False) is_same_person = face_result['verified'] similarity_score = face_result['distance'] # Convert images to OpenCV format img1_cv = cv2.cvtColor(img1_array, cv2.COLOR_RGB2BGR) img2_cv = cv2.cvtColor(img2_array, cv2.COLOR_RGB2BGR) # Body analysis with MediaPipe def get_body_info(image): with mp_pose.Pose(static_image_mode=True) as pose: results = pose.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) if results.pose_landmarks: landmarks = results.pose_landmarks.landmark # Calculate bounding box height and width x_values = [landmark.x for landmark in landmarks] y_values = [landmark.y for landmark in landmarks] width = max(x_values) - min(x_values) height = max(y_values) - min(y_values) aspect_ratio = height / width if width > 0 else 0 return aspect_ratio, width, height return None, None, None aspect_ratio1, width1, height1 = get_body_info(img1_cv) aspect_ratio2, width2, height2 = get_body_info(img2_cv) # Create a chart to display face and body similarities labels = ['Face Similarity', 'Body Aspect Ratio', 'Body Width', 'Body Height'] values1 = [similarity_score, aspect_ratio1, width1, height1] values2 = [similarity_score, aspect_ratio2, width2, height2] x = np.arange(len(labels)) width = 0.35 fig, ax = plt.subplots() ax.bar(x - width/2, values1, width, label='Image 1') ax.bar(x + width/2, values2, width, label='Image 2') ax.set_ylabel('Scores') ax.set_title('Comparison of Face and Body Features') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend() # Save and return the chart plt.tight_layout() plt_path = "comparison_chart.png" plt.savefig(plt_path) plt.close(fig) return is_same_person, plt_path # Set up Gradio interface iface = gr.Interface( fn=analyze_images, inputs=[gr.Image(type="pil"), gr.Image(type="pil")], outputs = [gr.Textbox(label="Same Person?"), gr.Image(label="Comparison Chart")], title="Face and Body Similarity Analyzer", description="Upload two images to analyze if they contain the same person and compare body features." ) iface.launch()