Spaces:
Sleeping
Sleeping
File size: 2,220 Bytes
704a77e ce971f1 704a77e 00935ea 704a77e c5b0335 704a77e 1e1e794 ce971f1 704a77e ce971f1 704a77e c5b0335 ce971f1 1e1e794 ce971f1 55f7e53 09a050f ce971f1 70720ab ce971f1 09a050f 1e1e794 c5b0335 ce971f1 fa2d0fb c5b0335 70720ab ce971f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import numpy as np
import base64
import gradio as gr
from tensorflow import keras
import cv2
# Load the model
model_path = 'sketch2draw_model.h5' # Update with your model path
model = keras.models.load_model(model_path)
# Define color mapping for different terrains
color_mapping = {
"Water": (0, 0, 255), # Blue
"Grass": (0, 255, 0), # Green
"Dirt": (139, 69, 19), # Brown
"Clouds": (255, 255, 255), # White
"Wood": (160, 82, 45), # Sienna
"Sky": (135, 206, 235) # Sky Blue
}
# Function to predict and generate image
def predict(image):
# Decode the image from base64
image_data = np.frombuffer(base64.b64decode(image.split(",")[1]), np.uint8)
image = cv2.imdecode(image_data, cv2.IMREAD_COLOR)
# Resize and normalize the image
image = cv2.resize(image, (128, 128)) # Resize as per your model's input
image = np.expand_dims(image, axis=0) / 255.0 # Normalize if needed
# Generate image based on the model
generated_image = model.predict(image)[0] # Generate image
generated_image = (generated_image * 255).astype(np.uint8) # Rescale to 0-255
return generated_image
# Function to clear the canvas
def clear_canvas():
return np.zeros((400, 400, 3), dtype=np.uint8)
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("<h1>Sketch to Draw Model</h1>")
with gr.Row():
with gr.Column():
# Create a sketchpad for drawing
canvas = gr.Sketchpad(label="Draw Here")
clear_btn = gr.Button("Clear")
generate_btn = gr.Button("Generate Image")
with gr.Column():
# Create a dropdown for different terrain colors
color_dropdown = gr.Dropdown(
label="Select Brush Color",
choices=list(color_mapping.keys()),
value="Water" # Default color
)
output_image = gr.Image(label="Generated Image", type="numpy")
# Define the actions for buttons
clear_btn.click(fn=clear_canvas, inputs=None, outputs=canvas)
# Click to generate an image
generate_btn.click(fn=predict, inputs=canvas, outputs=output_image)
# Launch the Gradio app
demo.launch()
|