import numpy as np import base64 import gradio as gr from tensorflow import keras import cv2 # Load the model model_path = 'sketch2draw_model.h5' # Update with your model path model = keras.models.load_model(model_path) # Define color mapping for different terrains color_mapping = { "Water": (0, 0, 255), # Blue "Grass": (0, 255, 0), # Green "Dirt": (139, 69, 19), # Brown "Clouds": (255, 255, 255), # White "Wood": (160, 82, 45), # Sienna "Sky": (135, 206, 235) # Sky Blue } # Function to predict and generate image def predict(image): # Decode the image from base64 image_data = np.frombuffer(base64.b64decode(image.split(",")[1]), np.uint8) image = cv2.imdecode(image_data, cv2.IMREAD_COLOR) # Resize and normalize the image image = cv2.resize(image, (128, 128)) # Resize as per your model's input image = np.expand_dims(image, axis=0) / 255.0 # Normalize if needed # Generate image based on the model generated_image = model.predict(image)[0] # Generate image generated_image = (generated_image * 255).astype(np.uint8) # Rescale to 0-255 return generated_image # Function to clear the canvas def clear_canvas(): return np.zeros((400, 400, 3), dtype=np.uint8) # Create Gradio interface with gr.Blocks() as demo: gr.Markdown("