import numpy as np import torch import gradio as gr from TTS.api import TTS # Import TTS library # Placeholder for model loading and voice cloning logic class VoiceCloner: def __init__(self): self.model = None self.tts = None def load_model(self, npz_file): data = np.load(npz_file) # Load your model parameters from the npz file # Initialize your model here with the loaded parameters self.model = data # Example; replace with your actual model loading code def clone_voice(self, audio_file): # Implement the logic to clone voice from the uploaded audio file return audio_file # Placeholder; return processed audio def load_tts_model(self): # Load a pretrained TTS model self.tts = TTS(model_name="tts_models/en/ljspeech/glow-tts") # You can choose a different model if needed def text_to_speech(self, text): # Use the loaded TTS model to convert text to speech if self.tts is not None: output_audio = self.tts.tts(text) return output_audio # Return the generated audio else: return "TTS model not loaded!" # Create the Gradio interface def create_interface(): cloner = VoiceCloner() with gr.Blocks() as demo: gr.Markdown("## Voice Cloning and TTS Application") # User uploads their .npz file npz_file = gr.File(label="Upload Your .npz Voice Model") audio_input = gr.Audio(source="upload", type="filepath", label="Upload Original Audio") text_input = gr.Textbox(label="Text Input for TTS") output_audio = gr.Audio(label="Cloned Voice Output or TTS Output") upload_button = gr.Button("Load Model") # Button to clone voice clone_button = gr.Button("Clone Voice") # Button to convert text to speech tts_button = gr.Button("Convert Text to Speech") # Load the model when the user uploads the .npz file def load_and_initialize(npz): cloner.load_model(npz.name) # Use the file path to load the model cloner.load_tts_model() # Load the TTS model return "Model Loaded!" upload_button.click(fn=load_and_initialize, inputs=npz_file, outputs="text") # Clone the voice when the button is pressed clone_button.click(fn=cloner.clone_voice, inputs=audio_input, outputs=output_audio) # Convert text to speech when the button is pressed tts_button.click(fn=cloner.text_to_speech, inputs=text_input, outputs=output_audio) return demo if __name__ == "__main__": demo = create_interface() demo.launch()