import gradio as gr from tensorflow.keras.models import load_model import numpy as np # Load the saved model model = load_model('time_prediction_model.h5') def predict_time(features): # Assuming features is a list of input values input_data = np.array(features).reshape(1, -1) hour_prediction, minute_prediction = model.predict(input_data) # Convert predictions to readable format predicted_hour = np.argmax(hour_prediction) predicted_minute = np.argmax(minute_prediction) return f"{predicted_hour:02}:{predicted_minute:02}" # Create a Gradio interface interface = gr.Interface( fn=predict_time, inputs=[gr.inputs.Textbox(lines=2, placeholder="Enter input features")], outputs="text", title="Time Prediction AI" ) # Launch the interface interface.launch()