Spaces:
Runtime error
Runtime error
File size: 6,994 Bytes
7900c16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
"""
This script provides an exmaple to wrap TencentPretrain for generation.
Given the beginning of a text, language model generates the rest.
"""
import sys
import os
import argparse
import torch
import torch.nn.functional as F
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.embeddings import *
from tencentpretrain.encoders import *
from tencentpretrain.targets import *
from tencentpretrain.utils.constants import *
from tencentpretrain.utils import *
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.model_loader import load_model
from tencentpretrain.opts import infer_opts, tokenizer_opts
from tqdm import tqdm
class GenerateLm(torch.nn.Module):
def __init__(self, args):
super(GenerateLm, self).__init__()
self.embedding = Embedding(args)
for embedding_name in args.embedding:
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
self.embedding.update(tmp_emb, embedding_name)
self.encoder = str2encoder[args.encoder](args)
self.target = Target()
self.target.update(LmTarget(args, len(args.tokenizer.vocab)), "lm")
def forward(self, src, seg):
emb = self.embedding(src, seg)
output = self.encoder(emb, seg)
output = self.target.lm.output_layer(output)
return output
def top_k_top_p_filtering(logits, top_k, top_p):
top_k = min(top_k, logits.size(-1)) # Safety check
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = -float("Inf")
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = -float("Inf")
return logits
def build_visorgpt(model_path,
model_config,
vocab_path='TencentPretrain/models/google_uncased_en_coord_vocab.txt'):
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
infer_opts(parser)
tokenizer_opts(parser)
parser.add_argument("--top_k", type=int, default=70)
parser.add_argument("--top_p", type=float, default=0)
parser.add_argument("--temperature", type=float, default=1.0)
args = parser.parse_args()
args.target = "lm"
args.batch_size = 1
args.load_model_path = model_path
args.config_path = model_config
args.vocab_path = vocab_path
args = load_hyperparam(args)
args.seq_length = 1024
args.tokenizer = str2tokenizer[args.tokenizer](args)
model = GenerateLm(args)
model = load_model(model, args.load_model_path).cuda()
model.eval()
return args, model
def gen_sequence(args, model, input_text):
lines = [input_text]
generated_texts = []
for line in tqdm(lines):
src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(line))
seg = [1] * len(src)
beginning_length = len(src)
if len(src) > args.seq_length:
src = src[:args.seq_length]
seg = seg[:args.seq_length]
src_tensor, seg_tensor = torch.LongTensor([src]).cuda(), torch.LongTensor([seg]).cuda()
for i in range(args.seq_length - beginning_length):
output = model(src_tensor, seg_tensor)
next_token_logits = output[0][-1] / args.temperature
filtered_logits = top_k_top_p_filtering(next_token_logits, args.top_k, args.top_p)
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1).cuda()
src_tensor = torch.cat([src_tensor, next_token.view(1, 1)], dim=1)
seg_tensor = torch.cat([seg_tensor, torch.tensor([[1]]).cuda()], dim=1)
# generated_texts.append(line)
generated_sentence = " ".join(
args.tokenizer.convert_ids_to_tokens([token_id.item() for token_id in src_tensor[0]])
)
generated_texts.append(generated_sentence)
return generated_texts
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
infer_opts(parser)
parser.add_argument("--top_k", type=int, default=70)
parser.add_argument("--top_p", type=float, default=0)
parser.add_argument("--temperature", type=float, default=1.0)
parser.add_argument("--save_dir", type=str, default='predictions')
tokenizer_opts(parser)
args = parser.parse_args()
args.target = "lm"
args.batch_size = 1
args = load_hyperparam(args)
args.tokenizer = str2tokenizer[args.tokenizer](args)
model = GenerateLm(args)
model = load_model(model, args.load_model_path).cuda()
model.eval()
with open(args.test_path, mode="r", encoding="utf-8") as f:
lines = [i.strip() for i in f.readlines()]
generated_texts = []
for line in tqdm(lines):
src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(line))
seg = [1] * len(src)
beginning_length = len(src)
if len(src) > args.seq_length:
src = src[:args.seq_length]
seg = seg[:args.seq_length]
src_tensor, seg_tensor = torch.LongTensor([src]).cuda(), torch.LongTensor([seg]).cuda()
for i in range(args.seq_length - beginning_length):
output = model(src_tensor, seg_tensor)
next_token_logits = output[0][-1] / args.temperature
filtered_logits = top_k_top_p_filtering(next_token_logits, args.top_k, args.top_p)
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1).cuda()
src_tensor = torch.cat([src_tensor, next_token.view(1, 1)], dim=1)
seg_tensor = torch.cat([seg_tensor, torch.tensor([[1]]).cuda()], dim=1)
# generated_texts.append(line)
generated_sentence = " ".join(
args.tokenizer.convert_ids_to_tokens([token_id.item() for token_id in src_tensor[0]])
)
generated_texts.append(generated_sentence)
# import ipdb
# ipdb.set_trace()
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
with open(args.save_dir + '/' + args.prediction_path, mode="w", encoding="utf-8") as f:
for t in generated_texts:
f.write(t + "\n") |