File size: 6,994 Bytes
7900c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""
  This script provides an exmaple to wrap TencentPretrain for generation.
  Given the beginning of a text, language model generates the rest.
"""
import sys
import os
import argparse
import torch
import torch.nn.functional as F

tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)

from tencentpretrain.embeddings import *
from tencentpretrain.encoders import *
from tencentpretrain.targets import *
from tencentpretrain.utils.constants import *
from tencentpretrain.utils import *
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.model_loader import load_model
from tencentpretrain.opts import infer_opts, tokenizer_opts
from tqdm import tqdm


class GenerateLm(torch.nn.Module):
    def __init__(self, args):
        super(GenerateLm, self).__init__()
        self.embedding = Embedding(args)
        for embedding_name in args.embedding:
            tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
            self.embedding.update(tmp_emb, embedding_name)
        self.encoder = str2encoder[args.encoder](args)
        self.target = Target()
        self.target.update(LmTarget(args, len(args.tokenizer.vocab)), "lm")

    def forward(self, src, seg):
        emb = self.embedding(src, seg)
        output = self.encoder(emb, seg)
        output = self.target.lm.output_layer(output)
        return output


def top_k_top_p_filtering(logits, top_k, top_p):
    top_k = min(top_k, logits.size(-1))  # Safety check
    if top_k > 0:
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = -float("Inf")

    if top_p > 0.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0

        indices_to_remove = sorted_indices[sorted_indices_to_remove]
        logits[indices_to_remove] = -float("Inf")
    return logits


def build_visorgpt(model_path,
                        model_config, 
                        vocab_path='TencentPretrain/models/google_uncased_en_coord_vocab.txt'):    
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    infer_opts(parser)
    tokenizer_opts(parser)

    parser.add_argument("--top_k", type=int, default=70)
    parser.add_argument("--top_p", type=float, default=0)
    parser.add_argument("--temperature", type=float, default=1.0)

    args = parser.parse_args()

    args.target = "lm"
    args.batch_size = 1

    args.load_model_path = model_path
    args.config_path = model_config
    args.vocab_path = vocab_path
    args = load_hyperparam(args)
    args.seq_length = 1024

    args.tokenizer = str2tokenizer[args.tokenizer](args)

    model = GenerateLm(args)
    model = load_model(model, args.load_model_path).cuda()
    model.eval()
    return args, model

def gen_sequence(args, model, input_text):

    lines = [input_text]
    generated_texts = []
    for line in tqdm(lines):
        src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(line))
        seg = [1] * len(src)
        beginning_length = len(src)
        if len(src) > args.seq_length:
            src = src[:args.seq_length]
            seg = seg[:args.seq_length]
        src_tensor, seg_tensor = torch.LongTensor([src]).cuda(), torch.LongTensor([seg]).cuda()

        for i in range(args.seq_length - beginning_length):
            output = model(src_tensor, seg_tensor)
            next_token_logits = output[0][-1] / args.temperature
            filtered_logits = top_k_top_p_filtering(next_token_logits, args.top_k, args.top_p)
            next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1).cuda()

            src_tensor = torch.cat([src_tensor, next_token.view(1, 1)], dim=1)
            seg_tensor = torch.cat([seg_tensor, torch.tensor([[1]]).cuda()], dim=1)

        # generated_texts.append(line)
        generated_sentence = " ".join(
            args.tokenizer.convert_ids_to_tokens([token_id.item() for token_id in src_tensor[0]])
        )
        generated_texts.append(generated_sentence)
    return generated_texts

if __name__ == '__main__':
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    infer_opts(parser)

    parser.add_argument("--top_k", type=int, default=70)
    parser.add_argument("--top_p", type=float, default=0)
    parser.add_argument("--temperature", type=float, default=1.0)
    parser.add_argument("--save_dir", type=str, default='predictions')

    tokenizer_opts(parser)

    args = parser.parse_args()

    args.target = "lm"
    args.batch_size = 1

    args = load_hyperparam(args)

    args.tokenizer = str2tokenizer[args.tokenizer](args)

    model = GenerateLm(args)
    model = load_model(model, args.load_model_path).cuda()
    model.eval()

    with open(args.test_path, mode="r", encoding="utf-8") as f:
        lines = [i.strip() for i in f.readlines()]

    generated_texts = []
    for line in tqdm(lines):
        src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(line))
        seg = [1] * len(src)
        beginning_length = len(src)
        if len(src) > args.seq_length:
            src = src[:args.seq_length]
            seg = seg[:args.seq_length]
        src_tensor, seg_tensor = torch.LongTensor([src]).cuda(), torch.LongTensor([seg]).cuda()

        for i in range(args.seq_length - beginning_length):
            output = model(src_tensor, seg_tensor)
            next_token_logits = output[0][-1] / args.temperature
            filtered_logits = top_k_top_p_filtering(next_token_logits, args.top_k, args.top_p)
            next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1).cuda()

            src_tensor = torch.cat([src_tensor, next_token.view(1, 1)], dim=1)
            seg_tensor = torch.cat([seg_tensor, torch.tensor([[1]]).cuda()], dim=1)

        # generated_texts.append(line)
        generated_sentence = " ".join(
            args.tokenizer.convert_ids_to_tokens([token_id.item() for token_id in src_tensor[0]])
        )
        generated_texts.append(generated_sentence)
        # import ipdb
        # ipdb.set_trace()

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)

    with open(args.save_dir + '/' + args.prediction_path, mode="w", encoding="utf-8") as f:
        for t in generated_texts:
            f.write(t + "\n")