Spaces:
Runtime error
Runtime error
File size: 12,725 Bytes
7900c16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
"""
This script provides an example to wrap TencentPretrain for speech-to-text fine-tuning.
"""
import sys
import os
import random
import argparse
import editdistance
import torch
import torchaudio
import torchaudio.compliance.kaldi as ta_kaldi
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.model_saver import save_model
from tencentpretrain.decoders import *
from tencentpretrain.targets import *
from tencentpretrain.utils import utterance_cmvn
from finetune.run_classifier import *
class Speech2text(torch.nn.Module):
def __init__(self, args):
super(Speech2text, self).__init__()
self.embedding = Embedding(args)
for embedding_name in args.embedding:
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
self.embedding.update(tmp_emb, embedding_name)
self.encoder = str2encoder[args.encoder](args)
self.tgt_embedding = Embedding(args)
for embedding_name in args.tgt_embedding:
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
self.tgt_embedding.update(tmp_emb, embedding_name)
self.decoder = str2decoder[args.decoder](args)
self.target = Target()
for target_name in args.target:
tmp_target = str2target[target_name](args, len(args.tokenizer.vocab))
self.target.update(tmp_target, target_name)
if args.tie_weights:
self.target.lm.output_layer.weight = self.tgt_embedding.word.embedding.weight
def encode(self, src, seg):
emb = self.embedding(src, seg)
memory_bank = self.encoder(emb, seg)
return memory_bank, emb
def decode(self, emb, memory_bank, tgt, tgt_seg):
tgt_in, tgt_out, _ = tgt
decoder_emb = self.tgt_embedding(tgt_in, tgt_seg)
hidden = self.decoder(memory_bank, decoder_emb, [emb.abs()[:,:,0]])
output = self.target.lm.output_layer(hidden)
return output
def forward(self, src, tgt, seg, tgt_seg, memory_bank=None, only_use_encoder=False):
if only_use_encoder:
return self.encode(src, seg)
if memory_bank is not None:
emb = src
return self.decode(emb, memory_bank, tgt, tgt_seg)
tgt_in, tgt_out, _ = tgt
memory_bank, emb = self.encode(src, seg)
if tgt_out is None:
output = self.decode(emb, memory_bank, tgt, None)
return None, output
else:
decoder_emb = self.tgt_embedding(tgt_in, tgt_seg)
hidden = self.decoder(memory_bank, decoder_emb, (seg,))
loss = self.target(hidden, tgt_out, None)[0]
return loss, None
def read_dataset(args, path):
dataset, columns = [], {}
padding_vector = torch.FloatTensor(args.audio_feature_size * [0.0] if args.audio_feature_size > 1 else 0.0).unsqueeze(0)
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
columns[column_name] = i
continue
line = line.rstrip("\r\n").split("\t")
text, wav_path = line[columns["text"]], line[columns["wav_path"]]
tgt = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN]) + \
args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text)) + \
args.tokenizer.convert_tokens_to_ids([SEP_TOKEN])
if len(tgt) > args.seq_length:
tgt = tgt[: args.seq_length]
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])
pad_num = args.seq_length - len(tgt)
tgt = tgt + PAD_ID * pad_num
waveform, sample_rate = torchaudio.load(wav_path)
waveform = waveform * (2 ** 15) # Kaldi compliance: 16-bit signed integers
feature = ta_kaldi.fbank(waveform, num_mel_bins=args.audio_feature_size, sample_frequency=sample_rate)
if "ceptral_normalize" in args.audio_preprocess:
feature = utterance_cmvn(feature)
difference = args.max_audio_frames - feature.size(0)
if difference < 0:
continue
else:
src_audio = torch.cat([feature] + [padding_vector] * difference)
seg_audio = [1] * int(feature.size(0) / args.conv_layers_num / 2) + [0] * (int(args.max_audio_frames /args.conv_layers_num / 2) - int(feature.size(0) / args.conv_layers_num / 2))
tgt_in = tgt[:-1]
tgt_out = tgt[1:]
tgt_seg = [1] * (len(tgt[1:]) - pad_num) + [0] * pad_num
dataset.append((src_audio, tgt_in, tgt_out, seg_audio, tgt_seg))
return dataset
def batch_loader(batch_size, src, tgt_in, tgt_out, seg, tgt_seg):
instances_num = src.size()[0]
for i in range(instances_num // batch_size):
src_batch = src[i * batch_size : (i + 1) * batch_size, :]
tgt_in_batch = tgt_in[i * batch_size : (i + 1) * batch_size, :]
tgt_out_batch = tgt_out[i * batch_size : (i + 1) * batch_size, :]
seg_batch = seg[i * batch_size : (i + 1) * batch_size, :]
tgt_seg_batch = tgt_seg[i * batch_size : (i + 1) * batch_size, :]
yield src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch
if instances_num > instances_num // batch_size * batch_size:
src_batch = src[instances_num // batch_size * batch_size :, :]
tgt_in_batch = tgt_in[instances_num // batch_size * batch_size :, :]
tgt_out_batch = tgt_out[instances_num // batch_size * batch_size :, :]
seg_batch = seg[instances_num // batch_size * batch_size :, :]
tgt_seg_batch = tgt_seg[instances_num // batch_size * batch_size :, :]
yield src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch
def train_model(args, model, optimizer, scheduler, src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch):
model.zero_grad()
src_batch = src_batch.to(args.device)
tgt_in_batch = tgt_in_batch.to(args.device)
tgt_out_batch = tgt_out_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
tgt_seg_batch = tgt_seg_batch.to(args.device)
loss, _ = model(src_batch, (tgt_in_batch, tgt_out_batch, src_batch), seg_batch, tgt_seg_batch)
if torch.cuda.device_count() > 1:
loss = torch.mean(loss)
if args.fp16:
with args.amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
scheduler.step()
return loss
def evaluate(args, dataset):
src = torch.stack([example[0] for example in dataset], dim=0)
tgt_in = torch.LongTensor([example[1] for example in dataset])
tgt_out = torch.LongTensor([example[2] for example in dataset])
seg = torch.LongTensor([example[3] for example in dataset])
tgt_seg = torch.LongTensor([example[4] for example in dataset])
generated_sentences = []
args.model.eval()
for i, (src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch) in enumerate(batch_loader(args.batch_size, src, tgt_in, tgt_out, seg, tgt_seg)):
src_batch = src_batch.to(args.device)
tgt_in_batch = torch.zeros(tgt_in_batch.size()[0], 1, dtype=torch.long, device=args.device)
tgt_seg_batch = torch.ones(tgt_in_batch.size()[0], 1, dtype=torch.long, device=args.device)
for j in range(tgt_in_batch.size()[0]):
tgt_in_batch[j][0] = args.tokenizer.vocab.get(CLS_TOKEN)
seg_batch = seg_batch.to(args.device)
with torch.no_grad():
memory_bank, emb = args.model(src_batch, None, seg_batch, tgt_seg_batch, only_use_encoder=True)
for _ in range(args.tgt_seq_length):
tgt_out_batch = tgt_in_batch
with torch.no_grad():
outputs = args.model(emb, (tgt_in_batch, tgt_out_batch, src_batch), None, tgt_seg_batch, memory_bank=memory_bank)
next_token_logits = outputs[:, -1]
next_tokens = torch.argmax(next_token_logits, dim=1).unsqueeze(1)
tgt_in_batch = torch.cat([tgt_in_batch, next_tokens], dim=1)
tgt_seg_batch = torch.ones(tgt_in_batch.size()[0], tgt_in_batch.size()[1], dtype=torch.long, device=args.device)
for j in range(len(outputs)):
sentence = "".join([args.tokenizer.inv_vocab[token_id.item()] for token_id in tgt_in_batch[j][1:]])
generated_sentences.append(sentence)
w_errs = 0
w_total = 0
for i, example in enumerate(dataset):
tgt = example[2]
tgt_token = "".join([args.tokenizer.inv_vocab[token_id] for token_id in tgt[:-2]])
generated_sentences[i] = generated_sentences[i].split(SEP_TOKEN)[0]
pred = generated_sentences[i].split("β")
gold = tgt_token.split(SEP_TOKEN)[0].split("β")
w_errs += editdistance.eval(pred, gold)
w_total += len(gold)
args.logger.info("WER. (Word_Errors/Total): {:.4f} ({}/{}) ".format(w_errs / w_total, w_errs, w_total))
return w_errs / w_total
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
finetune_opts(parser)
tokenizer_opts(parser)
parser.add_argument("--tgt_seq_length", type=int, default=50,
help="Output sequence length.")
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
set_seed(args.seed)
# Build tokenizer.
args.tokenizer = str2tokenizer[args.tokenizer](args)
# Build classification model.
model = Speech2text(args)
# Load or initialize parameters.
load_or_initialize_parameters(args, model)
# Get logger.
args.logger = init_logger(args)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
# Training phase.
trainset = read_dataset(args, args.train_path)
instances_num = len(trainset)
batch_size = args.batch_size
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
args.logger.info("Batch size: {}".format(batch_size))
args.logger.info("The number of training instances: {}".format(instances_num))
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
args.amp = amp
if torch.cuda.device_count() > 1:
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.model = model
total_loss, result, best_result = 0.0, 0.0, 100.0
args.logger.info("Start training.")
for epoch in range(1, args.epochs_num + 1):
random.shuffle(trainset)
src = torch.stack([example[0] for example in trainset], dim=0)
tgt_in = torch.LongTensor([example[1] for example in trainset])
tgt_out = torch.LongTensor([example[2] for example in trainset])
seg = torch.LongTensor([example[3] for example in trainset])
tgt_seg = torch.LongTensor([example[4] for example in trainset])
model.train()
for i, (src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch) in enumerate(batch_loader(batch_size, src, tgt_in, tgt_out, seg, tgt_seg)):
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps))
total_loss = 0.0
result = evaluate(args, read_dataset(args, args.dev_path))
if result < best_result:
best_result = result
save_model(model, args.output_model_path)
# Evaluation phase.
if args.test_path is not None:
args.logger.info("Test set evaluation.")
if torch.cuda.device_count() > 1:
args.model.module.load_state_dict(torch.load(args.output_model_path))
else:
args.model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, read_dataset(args, args.test_path))
if __name__ == "__main__":
main()
|