File size: 12,725 Bytes
7900c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
"""
This script provides an example to wrap TencentPretrain for speech-to-text fine-tuning.
"""
import sys
import os
import random
import argparse
import editdistance
import torch
import torchaudio
import torchaudio.compliance.kaldi as ta_kaldi

tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)

from tencentpretrain.model_saver import save_model
from tencentpretrain.decoders import *
from tencentpretrain.targets import *
from tencentpretrain.utils import utterance_cmvn
from finetune.run_classifier import *


class Speech2text(torch.nn.Module):
    def __init__(self, args):
        super(Speech2text, self).__init__()
        self.embedding = Embedding(args)
        for embedding_name in args.embedding:
            tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
            self.embedding.update(tmp_emb, embedding_name)
        self.encoder = str2encoder[args.encoder](args)
        self.tgt_embedding = Embedding(args)
        for embedding_name in args.tgt_embedding:
            tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
            self.tgt_embedding.update(tmp_emb, embedding_name)
        self.decoder = str2decoder[args.decoder](args)
        self.target = Target()
        for target_name in args.target:
            tmp_target = str2target[target_name](args, len(args.tokenizer.vocab))
            self.target.update(tmp_target, target_name)
        if args.tie_weights:
            self.target.lm.output_layer.weight = self.tgt_embedding.word.embedding.weight

    def encode(self, src, seg):
        emb = self.embedding(src, seg)
        memory_bank = self.encoder(emb, seg)
        return memory_bank, emb

    def decode(self, emb, memory_bank, tgt, tgt_seg):
        tgt_in, tgt_out, _ = tgt
        decoder_emb = self.tgt_embedding(tgt_in, tgt_seg)
        hidden = self.decoder(memory_bank, decoder_emb, [emb.abs()[:,:,0]])
        output = self.target.lm.output_layer(hidden)
        return output

    def forward(self, src, tgt, seg, tgt_seg, memory_bank=None, only_use_encoder=False):
        if only_use_encoder:
            return self.encode(src, seg)
        if memory_bank is not None:
            emb = src
            return self.decode(emb, memory_bank, tgt, tgt_seg)
        tgt_in, tgt_out, _ = tgt
        memory_bank, emb = self.encode(src, seg)
        
        if tgt_out is None:
            output = self.decode(emb, memory_bank, tgt, None)
            return None, output
        else:
            decoder_emb = self.tgt_embedding(tgt_in, tgt_seg)
            hidden = self.decoder(memory_bank, decoder_emb, (seg,))
            loss = self.target(hidden, tgt_out, None)[0]
            return loss, None


def read_dataset(args, path):
    dataset, columns = [], {}
    padding_vector = torch.FloatTensor(args.audio_feature_size * [0.0] if args.audio_feature_size > 1 else 0.0).unsqueeze(0)

    with open(path, mode="r", encoding="utf-8") as f:
        for line_id, line in enumerate(f):
            if line_id == 0:
                for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
                    columns[column_name] = i
                continue
            line = line.rstrip("\r\n").split("\t")
            text, wav_path = line[columns["text"]], line[columns["wav_path"]]
            tgt = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN]) + \
                args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text)) + \
                args.tokenizer.convert_tokens_to_ids([SEP_TOKEN])

            if len(tgt) > args.seq_length:
                tgt = tgt[: args.seq_length]

            PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])
            pad_num = args.seq_length - len(tgt)
            tgt = tgt + PAD_ID * pad_num

            waveform, sample_rate = torchaudio.load(wav_path)
            waveform = waveform * (2 ** 15)  # Kaldi compliance: 16-bit signed integers
            feature = ta_kaldi.fbank(waveform, num_mel_bins=args.audio_feature_size, sample_frequency=sample_rate)
            if "ceptral_normalize" in args.audio_preprocess:
                feature = utterance_cmvn(feature)
            difference = args.max_audio_frames - feature.size(0)

            if difference < 0:
                continue
            else:
                src_audio = torch.cat([feature] + [padding_vector] * difference)
                seg_audio = [1] * int(feature.size(0) / args.conv_layers_num / 2) + [0] * (int(args.max_audio_frames /args.conv_layers_num / 2) - int(feature.size(0) / args.conv_layers_num / 2))

            tgt_in = tgt[:-1]
            tgt_out = tgt[1:]
            tgt_seg = [1] * (len(tgt[1:]) - pad_num) + [0] * pad_num

            dataset.append((src_audio, tgt_in, tgt_out, seg_audio, tgt_seg))

    return dataset


def batch_loader(batch_size, src, tgt_in, tgt_out, seg, tgt_seg):
    instances_num = src.size()[0]
    for i in range(instances_num // batch_size):
        src_batch = src[i * batch_size : (i + 1) * batch_size, :]
        tgt_in_batch = tgt_in[i * batch_size : (i + 1) * batch_size, :]
        tgt_out_batch = tgt_out[i * batch_size : (i + 1) * batch_size, :]
        seg_batch = seg[i * batch_size : (i + 1) * batch_size, :]
        tgt_seg_batch = tgt_seg[i * batch_size : (i + 1) * batch_size, :]
        yield src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch

    if instances_num > instances_num // batch_size * batch_size:
        src_batch = src[instances_num // batch_size * batch_size :, :]
        tgt_in_batch = tgt_in[instances_num // batch_size * batch_size :, :]
        tgt_out_batch = tgt_out[instances_num // batch_size * batch_size :, :]
        seg_batch = seg[instances_num // batch_size * batch_size :, :]
        tgt_seg_batch = tgt_seg[instances_num // batch_size * batch_size :, :]
        yield src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch


def train_model(args, model, optimizer, scheduler, src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch):
    model.zero_grad()

    src_batch = src_batch.to(args.device)
    tgt_in_batch = tgt_in_batch.to(args.device)
    tgt_out_batch = tgt_out_batch.to(args.device)
    seg_batch = seg_batch.to(args.device)
    tgt_seg_batch = tgt_seg_batch.to(args.device)

    loss, _ = model(src_batch, (tgt_in_batch, tgt_out_batch, src_batch), seg_batch, tgt_seg_batch)

    if torch.cuda.device_count() > 1:
        loss = torch.mean(loss)

    if args.fp16:
        with args.amp.scale_loss(loss, optimizer) as scaled_loss:
            scaled_loss.backward()
    else:
        loss.backward()

    optimizer.step()
    scheduler.step()

    return loss


def evaluate(args, dataset):

    src = torch.stack([example[0] for example in dataset], dim=0)
    tgt_in = torch.LongTensor([example[1] for example in dataset])
    tgt_out = torch.LongTensor([example[2] for example in dataset])
    seg = torch.LongTensor([example[3] for example in dataset])
    tgt_seg = torch.LongTensor([example[4] for example in dataset])

    generated_sentences = []
    args.model.eval()

    for i, (src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch) in enumerate(batch_loader(args.batch_size, src, tgt_in, tgt_out, seg, tgt_seg)):

        src_batch = src_batch.to(args.device)
        tgt_in_batch = torch.zeros(tgt_in_batch.size()[0], 1, dtype=torch.long, device=args.device)
        tgt_seg_batch  = torch.ones(tgt_in_batch.size()[0], 1, dtype=torch.long, device=args.device)
        for j in range(tgt_in_batch.size()[0]):
            tgt_in_batch[j][0] = args.tokenizer.vocab.get(CLS_TOKEN)

        seg_batch = seg_batch.to(args.device)

        with torch.no_grad():
            memory_bank, emb = args.model(src_batch, None, seg_batch, tgt_seg_batch, only_use_encoder=True)

        for _ in range(args.tgt_seq_length):
            tgt_out_batch = tgt_in_batch
            with torch.no_grad():
                outputs = args.model(emb, (tgt_in_batch, tgt_out_batch, src_batch), None, tgt_seg_batch, memory_bank=memory_bank)

            next_token_logits = outputs[:, -1]
            next_tokens = torch.argmax(next_token_logits, dim=1).unsqueeze(1)
            tgt_in_batch = torch.cat([tgt_in_batch, next_tokens], dim=1)
            tgt_seg_batch  = torch.ones(tgt_in_batch.size()[0], tgt_in_batch.size()[1], dtype=torch.long, device=args.device)
        for j in range(len(outputs)):
            sentence = "".join([args.tokenizer.inv_vocab[token_id.item()] for token_id in tgt_in_batch[j][1:]])
            generated_sentences.append(sentence)

    w_errs = 0
    w_total = 0

    for i, example in enumerate(dataset):
        tgt = example[2]
        tgt_token = "".join([args.tokenizer.inv_vocab[token_id] for token_id in tgt[:-2]])
        generated_sentences[i] = generated_sentences[i].split(SEP_TOKEN)[0]

        pred = generated_sentences[i].split("▁")
        gold = tgt_token.split(SEP_TOKEN)[0].split("▁")
        w_errs += editdistance.eval(pred, gold)
        w_total += len(gold)

    args.logger.info("WER. (Word_Errors/Total): {:.4f} ({}/{}) ".format(w_errs / w_total, w_errs, w_total))
    return w_errs / w_total


def main():
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    finetune_opts(parser)

    tokenizer_opts(parser)

    parser.add_argument("--tgt_seq_length", type=int, default=50,
                        help="Output sequence length.")

    args = parser.parse_args()

    # Load the hyperparameters from the config file.
    args = load_hyperparam(args)

    set_seed(args.seed)

    # Build tokenizer.
    args.tokenizer = str2tokenizer[args.tokenizer](args)

    # Build classification model.
    model = Speech2text(args)

    # Load or initialize parameters.
    load_or_initialize_parameters(args, model)

    # Get logger.
    args.logger = init_logger(args)

    args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(args.device)

    # Training phase.
    trainset = read_dataset(args, args.train_path)
    instances_num = len(trainset)
    batch_size = args.batch_size

    args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1

    args.logger.info("Batch size: {}".format(batch_size))
    args.logger.info("The number of training instances: {}".format(instances_num))

    optimizer, scheduler = build_optimizer(args, model)

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
        args.amp = amp

    if torch.cuda.device_count() > 1:
        args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
        model = torch.nn.DataParallel(model)
    args.model = model

    total_loss, result, best_result = 0.0, 0.0, 100.0

    args.logger.info("Start training.")

    for epoch in range(1, args.epochs_num + 1):
        random.shuffle(trainset)
        src = torch.stack([example[0] for example in trainset], dim=0)
        tgt_in = torch.LongTensor([example[1] for example in trainset])
        tgt_out = torch.LongTensor([example[2] for example in trainset])
        seg = torch.LongTensor([example[3] for example in trainset])
        tgt_seg = torch.LongTensor([example[4] for example in trainset])

        model.train()
        for i, (src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch) in enumerate(batch_loader(batch_size, src, tgt_in, tgt_out, seg, tgt_seg)):
            loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_in_batch, tgt_out_batch, seg_batch, tgt_seg_batch)
            total_loss += loss.item()
            if (i + 1) % args.report_steps == 0:
                args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps))
                total_loss = 0.0

        result = evaluate(args, read_dataset(args, args.dev_path))
        if result < best_result:
            best_result = result
            save_model(model, args.output_model_path)

    # Evaluation phase.
    if args.test_path is not None:
        args.logger.info("Test set evaluation.")
        if torch.cuda.device_count() > 1:
            args.model.module.load_state_dict(torch.load(args.output_model_path))
        else:
            args.model.load_state_dict(torch.load(args.output_model_path))
        evaluate(args, read_dataset(args, args.test_path))


if __name__ == "__main__":
    main()