Spaces:
Runtime error
Runtime error
File size: 6,195 Bytes
7900c16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
"""
This script provides an example to use prompt for classification inference.
"""
import sys
import os
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.model_loader import load_model
from tencentpretrain.opts import infer_opts, tokenizer_opts
from finetune.run_classifier_prompt import *
def read_dataset(args, path):
dataset, columns = [], {}
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
columns[column_name] = i
continue
line = line.rstrip("\r\n").split("\t")
mask_position = -1
tgt_token_id = [1]
src = [args.tokenizer.vocab.get(CLS_TOKEN)]
if "text_b" not in columns: # Sentence classification.
text_a = line[columns["text_a"]]
text_a_token_id = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_a))
max_length = args.seq_length - args.template_length - 2
text_a_token_id = text_a_token_id[:max_length]
for prompt_token in args.prompt_template:
if prompt_token == "[TEXT_A]":
src += text_a_token_id
elif prompt_token == "[ANS]":
src += [args.tokenizer.vocab.get(MASK_TOKEN)]
mask_position = len(src) - 1
else:
src += prompt_token
else: # Sentence-pair classification.
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]
text_a_token_id = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_a))
text_b_token_id = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_b))
max_length = args.seq_length - args.template_length - len(text_a_token_id) - 3
text_b_token_id = text_b_token_id[:max_length]
for prompt_token in args.prompt_template:
if prompt_token == "[TEXT_A]":
src += text_a_token_id
src += [args.tokenizer.vocab.get(SEP_TOKEN)]
elif prompt_token == "[ANS]":
src += [args.tokenizer.vocab.get(MASK_TOKEN)]
mask_position = len(src) - 1
elif prompt_token == "[TEXT_B]":
src += text_b_token_id
else:
src += prompt_token
src += [args.tokenizer.vocab.get(SEP_TOKEN)]
seg = [1] * len(src)
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]
while len(src) < args.seq_length:
src.append(PAD_ID)
seg.append(0)
tgt = [0] * len(src)
tgt[mask_position] = tgt_token_id[0]
dataset.append((src, tgt, seg))
return dataset
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
infer_opts(parser)
tokenizer_opts(parser)
parser.add_argument("--output_logits", action="store_true", help="Write logits to output file.")
parser.add_argument("--output_prob", action="store_true", help="Write probabilities to output file.")
parser.add_argument("--prompt_id", type=str, default="chnsenticorp_char")
parser.add_argument("--prompt_path", type=str, default="models/prompts.json")
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
# Build tokenizer.
args.tokenizer = str2tokenizer[args.tokenizer](args)
process_prompt_template(args)
answer_position = [0] * len(args.tokenizer.vocab)
for answer in args.answer_word_dict_inv:
answer_position[int(args.tokenizer.vocab[answer])] = 1
args.answer_position = torch.LongTensor(answer_position)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Build classification model and load parameters.
model = ClozeTest(args)
model = load_model(model, args.load_model_path)
# For simplicity, we use DataParallel wrapper to use multiple GPUs.
model = model.to(args.device)
if torch.cuda.device_count() > 1:
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
dataset = read_dataset(args, args.test_path)
src = torch.LongTensor([sample[0] for sample in dataset])
tgt = torch.LongTensor([sample[1] for sample in dataset])
seg = torch.LongTensor([sample[2] for sample in dataset])
batch_size = args.batch_size
instances_num = src.size()[0]
print("The number of prediction instances: ", instances_num)
model.eval()
with open(args.prediction_path, mode="w", encoding="utf-8") as f:
f.write("label")
if args.output_logits:
f.write("\t" + "logits")
if args.output_prob:
f.write("\t" + "prob")
f.write("\n")
for _, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)):
src_batch = src_batch.to(args.device)
tgt_batch = tgt_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
with torch.no_grad():
_, pred, logits = model(src_batch, tgt_batch, seg_batch)
logits = logits[:, args.answer_position > 0]
prob = nn.Softmax(dim=1)(logits)
logits = logits.cpu().numpy().tolist()
prob = prob.cpu().numpy().tolist()
for j in range(len(pred)):
f.write(str(pred[j]))
if args.output_logits:
f.write("\t" + " ".join([str(v) for v in logits[j]]))
if args.output_prob:
f.write("\t" + " ".join([str(v) for v in prob[j]]))
f.write("\n")
if __name__ == "__main__":
main()
|