File size: 6,195 Bytes
7900c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
"""
  This script provides an example to use prompt for classification inference.
"""
import sys
import os

tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)

from tencentpretrain.model_loader import load_model
from tencentpretrain.opts import infer_opts, tokenizer_opts
from finetune.run_classifier_prompt import *


def read_dataset(args, path):
    dataset, columns = [], {}
    with open(path, mode="r", encoding="utf-8") as f:
        for line_id, line in enumerate(f):
            if line_id == 0:
                for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
                    columns[column_name] = i
                continue
            line = line.rstrip("\r\n").split("\t")
            mask_position = -1
            tgt_token_id = [1]
            src = [args.tokenizer.vocab.get(CLS_TOKEN)]
            if "text_b" not in columns:  # Sentence classification.
                text_a = line[columns["text_a"]]
                text_a_token_id = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_a))
                max_length = args.seq_length - args.template_length - 2
                text_a_token_id = text_a_token_id[:max_length]
                for prompt_token in args.prompt_template:
                    if prompt_token == "[TEXT_A]":
                        src += text_a_token_id
                    elif prompt_token == "[ANS]":
                        src += [args.tokenizer.vocab.get(MASK_TOKEN)]
                        mask_position = len(src) - 1
                    else:
                        src += prompt_token
            else:  # Sentence-pair classification.
                text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]
                text_a_token_id = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_a))
                text_b_token_id = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_b))
                max_length = args.seq_length - args.template_length - len(text_a_token_id) - 3
                text_b_token_id = text_b_token_id[:max_length]
                for prompt_token in args.prompt_template:
                    if prompt_token == "[TEXT_A]":
                        src += text_a_token_id
                        src += [args.tokenizer.vocab.get(SEP_TOKEN)]
                    elif prompt_token == "[ANS]":
                        src += [args.tokenizer.vocab.get(MASK_TOKEN)]
                        mask_position = len(src) - 1
                    elif prompt_token == "[TEXT_B]":
                        src += text_b_token_id
                    else:
                        src += prompt_token
            src += [args.tokenizer.vocab.get(SEP_TOKEN)]
            seg = [1] * len(src)
            PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]
            while len(src) < args.seq_length:
                src.append(PAD_ID)
                seg.append(0)
            tgt = [0] * len(src)
            tgt[mask_position] = tgt_token_id[0]
            dataset.append((src, tgt, seg))

    return dataset


def main():
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    infer_opts(parser)

    tokenizer_opts(parser)

    parser.add_argument("--output_logits", action="store_true", help="Write logits to output file.")
    parser.add_argument("--output_prob", action="store_true", help="Write probabilities to output file.")

    parser.add_argument("--prompt_id", type=str, default="chnsenticorp_char")
    parser.add_argument("--prompt_path", type=str, default="models/prompts.json")

    args = parser.parse_args()

    # Load the hyperparameters from the config file.
    args = load_hyperparam(args)

    # Build tokenizer.
    args.tokenizer = str2tokenizer[args.tokenizer](args)

    process_prompt_template(args)

    answer_position = [0] * len(args.tokenizer.vocab)
    for answer in args.answer_word_dict_inv:
        answer_position[int(args.tokenizer.vocab[answer])] = 1
    args.answer_position = torch.LongTensor(answer_position)

    args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # Build classification model and load parameters.
    model = ClozeTest(args)
    model = load_model(model, args.load_model_path)

    # For simplicity, we use DataParallel wrapper to use multiple GPUs.
    model = model.to(args.device)
    if torch.cuda.device_count() > 1:
        print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
        model = torch.nn.DataParallel(model)

    dataset = read_dataset(args, args.test_path)

    src = torch.LongTensor([sample[0] for sample in dataset])
    tgt = torch.LongTensor([sample[1] for sample in dataset])
    seg = torch.LongTensor([sample[2] for sample in dataset])

    batch_size = args.batch_size
    instances_num = src.size()[0]

    print("The number of prediction instances: ", instances_num)

    model.eval()

    with open(args.prediction_path, mode="w", encoding="utf-8") as f:
        f.write("label")
        if args.output_logits:
            f.write("\t" + "logits")
        if args.output_prob:
            f.write("\t" + "prob")
        f.write("\n")
        for _, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)):
            src_batch = src_batch.to(args.device)
            tgt_batch = tgt_batch.to(args.device)
            seg_batch = seg_batch.to(args.device)
            with torch.no_grad():
                _, pred, logits = model(src_batch, tgt_batch, seg_batch)

            logits = logits[:, args.answer_position > 0]
            prob = nn.Softmax(dim=1)(logits)
            logits = logits.cpu().numpy().tolist()
            prob = prob.cpu().numpy().tolist()

            for j in range(len(pred)):
                f.write(str(pred[j]))
                if args.output_logits:
                    f.write("\t" + " ".join([str(v) for v in logits[j]]))
                if args.output_prob:
                    f.write("\t" + " ".join([str(v) for v in prob[j]]))
                f.write("\n")


if __name__ == "__main__":
    main()