File size: 6,227 Bytes
7900c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
"""
  This script provides an example to wrap TencentPretrain for classification inference.
"""
import sys
import os
import torch
import argparse
import collections
import torch.nn as nn

tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)

from tencentpretrain.utils.constants import *
from tencentpretrain.utils import *
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.utils.seed import set_seed
from tencentpretrain.model_loader import load_model
from tencentpretrain.opts import infer_opts, tokenizer_opts
from finetune.run_classifier_siamese import SiameseClassifier


def batch_loader(batch_size, src, seg):
    src_a, src_b = src
    seg_a, seg_b = seg
    instances_num = src_a.size()[0]
    for i in range(instances_num // batch_size):
        src_a_batch = src_a[i * batch_size : (i + 1) * batch_size, :]
        src_b_batch = src_b[i * batch_size : (i + 1) * batch_size, :]
        seg_a_batch = seg_a[i * batch_size : (i + 1) * batch_size, :]
        seg_b_batch = seg_b[i * batch_size : (i + 1) * batch_size, :]
        yield (src_a_batch, src_b_batch), (seg_a_batch, seg_b_batch)
    if instances_num > instances_num // batch_size * batch_size:
        src_a_batch = src_a[instances_num // batch_size * batch_size :, :]
        src_b_batch = src_b[instances_num // batch_size * batch_size :, :]
        seg_a_batch = seg_a[instances_num // batch_size * batch_size :, :]
        seg_b_batch = seg_b[instances_num // batch_size * batch_size :, :]
        yield (src_a_batch, src_b_batch), (seg_a_batch, seg_b_batch)


def read_dataset(args, path):
    dataset, columns = [], {}
    with open(path, mode="r", encoding="utf-8") as f:
        for line_id, line in enumerate(f):
            if line_id == 0:
                line = line.rstrip("\r\n").split("\t")
                for i, column_name in enumerate(line):
                    columns[column_name] = i
                continue
            line = line.rstrip("\r\n").split("\t")
            text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]
            src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN])
            src_b = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_b) + [SEP_TOKEN])
            seg_a = [1] * len(src_a)
            seg_b = [1] * len(src_b)
            PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]

            if len(src_a) >= args.seq_length:
                src_a = src_a[:args.seq_length]
                seg_a = seg_a[:args.seq_length]
            while len(src_a) < args.seq_length:
                src_a.append(PAD_ID)
                seg_a.append(0)

            if len(src_b) >= args.seq_length:
                src_b = src_b[:args.seq_length]
                seg_b = seg_b[:args.seq_length]
            while len(src_b) < args.seq_length:
                src_b.append(PAD_ID)
                seg_b.append(0)

            dataset.append(((src_a, src_b), (seg_a, seg_b)))

    return dataset


def main():
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    infer_opts(parser)

    parser.add_argument("--labels_num", type=int, required=True,
                        help="Number of prediction labels.")
    tokenizer_opts(parser)

    parser.add_argument("--output_logits", action="store_true", help="Write logits to output file.")
    parser.add_argument("--output_prob", action="store_true", help="Write probabilities to output file.")

    args = parser.parse_args()

    # Load the hyperparameters from the config file.
    args = load_hyperparam(args)

    # Build tokenizer.
    args.tokenizer = str2tokenizer[args.tokenizer](args)

    # Build classification model and load parameters.
    args.soft_targets, args.soft_alpha = False, False
    model = SiameseClassifier(args)
    model = load_model(model, args.load_model_path)

    # For simplicity, we use DataParallel wrapper to use multiple GPUs.
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(device)
    if torch.cuda.device_count() > 1:
        print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
        model = torch.nn.DataParallel(model)

    dataset = read_dataset(args, args.test_path)

    src_a = torch.LongTensor([example[0][0] for example in dataset])
    src_b = torch.LongTensor([example[0][1] for example in dataset])
    seg_a = torch.LongTensor([example[1][0] for example in dataset])
    seg_b = torch.LongTensor([example[1][1] for example in dataset])

    batch_size = args.batch_size
    instances_num = src_a.size()[0]

    print("The number of prediction instances: ", instances_num)

    model.eval()

    with open(args.prediction_path, mode="w", encoding="utf-8") as f:
        f.write("label")
        if args.output_logits:
            f.write("\t" + "logits")
        if args.output_prob:
            f.write("\t" + "prob")
        f.write("\n")
        for i, (src_batch, seg_batch) in enumerate(batch_loader(batch_size, (src_a, src_b), (seg_a, seg_b))):

            src_a_batch, src_b_batch = src_batch
            seg_a_batch, seg_b_batch = seg_batch

            src_a_batch = src_a_batch.to(device)
            src_b_batch = src_b_batch.to(device)

            seg_a_batch = seg_a_batch.to(device)
            seg_b_batch = seg_b_batch.to(device)

            with torch.no_grad():
                _, logits = model((src_a_batch, src_b_batch), None, (seg_a_batch, seg_b_batch))

            pred = torch.argmax(logits, dim=1)
            pred = pred.cpu().numpy().tolist()
            prob = nn.Softmax(dim=1)(logits)
            logits = logits.cpu().numpy().tolist()
            prob = prob.cpu().numpy().tolist()

            for j in range(len(pred)):
                f.write(str(pred[j]))
                if args.output_logits:
                    f.write("\t" + " ".join([str(v) for v in logits[j]]))
                if args.output_prob:
                    f.write("\t" + " ".join([str(v) for v in prob[j]]))
                f.write("\n")


if __name__ == "__main__":
    main()