File size: 7,157 Bytes
7900c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch.nn as nn
from tencentpretrain.layers.layer_norm import *
from tencentpretrain.layers.position_ffn import PositionwiseFeedForward, GatedFeedForward
from tencentpretrain.layers.multi_headed_attn import MultiHeadedAttention
from tencentpretrain.layers.relative_position_embedding import RelativePositionEmbedding


class TransformerLayer(nn.Module):
    """
    Transformer layer mainly consists of two parts:
    multi-headed self-attention and feed forward layer.
    """
    def __init__(self, args):
        super(TransformerLayer, self).__init__()

        self.layernorm_positioning = args.layernorm_positioning

        if hasattr(args, "attention_head_size"):
            attention_head_size = args.attention_head_size
        else:
            attention_head_size = args.hidden_size // args.heads_num

        has_bias = bool(1 - args.remove_transformer_bias)
        with_scale = bool(1 - args.remove_attention_scale)

        # Multi-headed self-attention.
        self.self_attn = MultiHeadedAttention(
            args.hidden_size, args.heads_num, attention_head_size, args.dropout, has_bias=has_bias, with_scale = with_scale
        )
        self.dropout_1 = nn.Dropout(args.dropout)

        # Feed forward layer.
        if args.feed_forward == "gated":
            self.feed_forward = GatedFeedForward(
                args.hidden_size, args.feedforward_size, args.hidden_act, has_bias
            )
        else:
            self.feed_forward = PositionwiseFeedForward(
                args.hidden_size, args.feedforward_size, args.hidden_act, has_bias
            )
        self.dropout_2 = nn.Dropout(args.dropout)

        if args.layernorm == "t5":
            self.layer_norm_1 = T5LayerNorm(args.hidden_size)
            self.layer_norm_2 = T5LayerNorm(args.hidden_size)
        elif args.layernorm == "rms":
            self.layer_norm_1 = RMSNorm(args.hidden_size)
            self.layer_norm_2 = RMSNorm(args.hidden_size)
        else:
            self.layer_norm_1 = LayerNorm(args.hidden_size)
            self.layer_norm_2 = LayerNorm(args.hidden_size)

    def forward(self, hidden, mask, position_bias=None, has_residual_attention=False, prev_attn=None, freqs_cis=None):
        """
        Args:
            hidden: [batch_size x seq_length x emb_size]
            mask: [batch_size x 1 x seq_length x seq_length]
            position_bias: [1 x heads_num x seq_length x seq_length]
        Returns:
            output: [batch_size x seq_length x hidden_size]
        """

        if self.layernorm_positioning == "post":
            inter, prev_attn_out = self.self_attn(hidden, hidden, hidden, mask, position_bias, has_residual_attention, prev_attn, freqs_cis)
            inter = self.dropout_1(inter)
            inter = self.layer_norm_1(inter + hidden)
            output = self.dropout_2(self.feed_forward(inter))
            output = self.layer_norm_2(output + inter)
        else:
            inter = self.layer_norm_1(hidden)
            inter, prev_attn_out = self.self_attn(inter, inter, inter, mask, position_bias, has_residual_attention, prev_attn, freqs_cis)
            inter = self.dropout_1(inter)
            hidden = hidden + inter
            output = self.layer_norm_2(hidden)
            output = self.dropout_2(self.feed_forward(output)) + hidden
        return output, prev_attn_out


class TransformerDecoderLayer(nn.Module):
    def __init__(self, args):
        super(TransformerDecoderLayer, self).__init__()

        self.layernorm_positioning = args.layernorm_positioning

        if hasattr(args, "attention_head_size"):
            attention_head_size = args.attention_head_size
        else:
            attention_head_size = args.hidden_size // args.heads_num

        has_bias = bool(1 - args.remove_transformer_bias)
        with_scale = bool(1 - args.remove_attention_scale)

        # Multi-headed self-attention.
        self.self_attn = MultiHeadedAttention(
            args.hidden_size, args.heads_num, attention_head_size, args.dropout, has_bias=has_bias, with_scale=with_scale
        )
        self.dropout_1 = nn.Dropout(args.dropout)

        # Multi-headed context-attention.
        self.context_attn = MultiHeadedAttention(
            args.hidden_size, args.heads_num, attention_head_size, args.dropout, has_bias=has_bias, with_scale=with_scale
        )
        self.dropout_2 = nn.Dropout(args.dropout)

        # Feed forward layer.
        if args.feed_forward == "gated":
            self.feed_forward = GatedFeedForward(
                args.hidden_size, args.feedforward_size, args.hidden_act, has_bias
            )
        else:
            self.feed_forward = PositionwiseFeedForward(
                args.hidden_size, args.feedforward_size, args.hidden_act, has_bias
            )
        self.dropout_3 = nn.Dropout(args.dropout)

        # Layer Normalization
        if args.layernorm == "t5":
            self.layer_norm_1 = T5LayerNorm(args.hidden_size)
            self.layer_norm_2 = T5LayerNorm(args.hidden_size)
            self.layer_norm_3 = T5LayerNorm(args.hidden_size)
        else:
            self.layer_norm_1 = LayerNorm(args.hidden_size)
            self.layer_norm_2 = LayerNorm(args.hidden_size)
            self.layer_norm_3 = LayerNorm(args.hidden_size)

    def forward(self, hidden, encoder_hidden, mask_decoder, mask_encoder, self_position_bias=None, context_position_bias=None):
        """
        Args:
            hidden: [batch_size x seq_length x emb_size]
            encoder_hidden: [batch_size x seq_length x emb_size]
            mask_encoder: [batch_size x 1 x seq_length x seq_length]
            mask_decoder: [batch_size x 1 x seq_length x seq_length]
            self_position_bias: [1 x heads_num x seq_length x seq_length]
            context_position_bias: [1 x heads_num x seq_length x seq_length]
        Returns:
            output: [batch_size x seq_length x hidden_size]
        """

        if self.layernorm_positioning == "post":
            query, _ = self.self_attn(hidden, hidden, hidden, mask_decoder, self_position_bias)
            query = self.dropout_1(query)
            query_norm = self.layer_norm_1(query + hidden)
            mid, _ = self.context_attn(encoder_hidden, encoder_hidden, query_norm, mask_encoder, context_position_bias)
            mid = self.dropout_2(mid)
            mid_norm = self.layer_norm_2(mid + query_norm)
            output = self.dropout_3(self.feed_forward(mid_norm))
            output = self.layer_norm_3(output + mid_norm)
        else:
            hidden_norm = self.layer_norm_1(hidden)
            query, _ = self.self_attn(hidden_norm, hidden_norm, hidden_norm, mask_decoder, self_position_bias)
            query = self.dropout_1(query)
            query = query + hidden
            query_norm = self.layer_norm_2(query)
            mid, _ = self.context_attn(encoder_hidden, encoder_hidden, query_norm, mask_encoder, context_position_bias)
            mid = self.dropout_2(mid)
            mid = mid + query
            mid_norm = self.layer_norm_3(mid)
            output = self.dropout_3(self.feed_forward(mid_norm)) + mid
        return output