Spaces:
Runtime error
Runtime error
File size: 13,463 Bytes
7900c16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
def model_opts(parser):
parser.add_argument("--embedding", choices=["word", "pos", "seg", "sinusoidalpos", "patch", "speech", "word_patch", "dual"], default="word", nargs='+',
help="Embedding type.")
parser.add_argument("--tgt_embedding", choices=["word", "pos", "seg", "sinusoidalpos", "patch", "speech", "word_patch", "dual"], default="word", nargs='+',
help="Target embedding type.")
parser.add_argument("--max_seq_length", type=int, default=512,
help="Max sequence length for word embedding.")
parser.add_argument("--relative_position_embedding", action="store_true",
help="Use relative position embedding.")
parser.add_argument("--rotary_position_embedding", action="store_true",
help="Use relative position embedding.")
parser.add_argument("--share_embedding", action="store_true",
help="Shared embedding and target embedding parameters.")
parser.add_argument("--remove_embedding_layernorm", action="store_true",
help="Remove layernorm on embedding.")
parser.add_argument("--factorized_embedding_parameterization", action="store_true", help="Factorized embedding parameterization.")
parser.add_argument("--encoder", choices=["transformer", "rnn", "lstm", "gru", "birnn",
"bilstm", "bigru", "gatedcnn", "dual"],
default="transformer", help="Encoder type.")
parser.add_argument("--decoder", choices=[None, "transformer"], default=None, help="Decoder type.")
parser.add_argument("--mask", choices=["fully_visible", "causal", "causal_with_prefix"], default="fully_visible",
help="Mask type.")
parser.add_argument("--layernorm_positioning", choices=["pre", "post"], default="post",
help="Layernorm positioning.")
parser.add_argument("--feed_forward", choices=["dense", "gated"], default="dense",
help="Feed forward type, specific to transformer model.")
parser.add_argument("--relative_attention_buckets_num", type=int, default=32,
help="Buckets num of relative position embedding.")
parser.add_argument("--remove_attention_scale", action="store_true",
help="Remove attention scale.")
parser.add_argument("--remove_transformer_bias", action="store_true",
help="Remove bias on transformer layers.")
parser.add_argument("--layernorm", choices=["normal", "t5"], default="normal",
help="Layernorm type.")
parser.add_argument("--bidirectional", action="store_true", help="Specific to recurrent model.")
parser.add_argument("--parameter_sharing", action="store_true", help="Parameter sharing.")
parser.add_argument("--has_residual_attention", action="store_true", help="Add residual attention.")
parser.add_argument("--has_lmtarget_bias", action="store_true",
help="Add bias on output_layer for lm target.")
parser.add_argument("--target", choices=["sp", "lm", "mlm", "bilm", "cls", "clr"], default="mlm", nargs='+',
help="The training target of the pretraining model.")
parser.add_argument("--tie_weights", action="store_true",
help="Tie the word embedding and softmax weights.")
parser.add_argument("--pooling", choices=["mean", "max", "first", "last"], default="first",
help="Pooling type.")
vision_opts(parser)
audio_opts(parser)
def vision_opts(parser):
parser.add_argument("--image_height", type=int, default=256,
help="image_height.")
parser.add_argument("--image_width", type=int, default=256,
help="image_width.")
parser.add_argument("--patch_size", type=int, default=16,
help="patch_size.")
parser.add_argument("--channels_num", type=int, default=3,
help="Channels num.")
parser.add_argument("--image_preprocess", type=str, default=["crop", "normalize"], nargs='+',
help="Preprocess and data augmentation methods. Choices: [\"crop\", \"horizontal_flip\", \"normalize\"]. ")
def audio_opts(parser):
parser.add_argument("--sampling_rate", type=int, default=16000,
help="The sampling rate at which the audio files should be digitalized expressed in Hertz per second (Hz).")
parser.add_argument("--audio_preprocess", type=str, default=["normalize_means", "normalize_vars", "ceptral_normalize"], nargs='+',
help="Preprocess and data augmentation methods. Choices: [\"normalize_means\", \"normalize_vars\", \"ceptral_normalize\"]. ")
parser.add_argument("--max_audio_frames", type=int, default=6000,
help="Maximum frames of an utterance.")
# For audio convolutional subsampler
parser.add_argument("--conv_layers_num", type=int, default=2,
help="Convolutional layers.")
parser.add_argument("--audio_feature_size", type=int, default=80,
help="Audio feature size.")
parser.add_argument("--conv_channels", type=int, default=1024,
help="Convolutional channels.")
parser.add_argument("--conv_kernel_sizes", type=int, default=[5, 5], nargs='+',
help="Convolutional kernel sizes.")
def log_opts(parser):
parser.add_argument("--log_path", type=str, default=None,
help="Log file path, default no output file.")
parser.add_argument("--log_level", choices=["ERROR", "INFO", "DEBUG", "NOTSET"], default="INFO",
help="Console log level. Verbosity: ERROR < INFO < DEBUG < NOTSET")
parser.add_argument("--log_file_level", choices=["ERROR", "INFO", "DEBUG", "NOTSET"], default="INFO",
help="Log file level. Verbosity: ERROR < INFO < DEBUG < NOTSET")
def optimization_opts(parser):
parser.add_argument("--learning_rate", type=float, default=2e-5,
help="Learning rate.")
parser.add_argument("--warmup", type=float, default=0.1,
help="Warm up value.")
parser.add_argument("--decay", type=float, default=0.5,
help="decay value.")
parser.add_argument("--fp16", action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit.")
parser.add_argument("--fp16_opt_level", choices=["O0", "O1", "O2", "O3" ], default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--optimizer", choices=["adamw", "adafactor"],
default="adamw",
help="Optimizer type.")
parser.add_argument("--scheduler", choices=["linear", "cosine", "cosine_with_restarts", "polynomial",
"constant", "constant_with_warmup", "inverse_sqrt", "tri_stage"],
default="linear", help="Scheduler type.")
def training_opts(parser):
parser.add_argument("--batch_size", type=int, default=32,
help="Batch size.")
parser.add_argument("--seq_length", type=int, default=128,
help="Sequence length.")
parser.add_argument("--dropout", type=float, default=0.1,
help="Dropout.")
parser.add_argument("--epochs_num", type=int, default=3,
help="Number of epochs.")
parser.add_argument("--report_steps", type=int, default=100,
help="Specific steps to print prompt.")
parser.add_argument("--seed", type=int, default=7,
help="Random seed.")
log_opts(parser)
def finetune_opts(parser):
# Path options.
parser.add_argument("--pretrained_model_path", default=None, type=str,
help="Path of the pretrained model.")
parser.add_argument("--output_model_path", default="models/finetuned_model.bin", type=str,
help="Path of the output model.")
parser.add_argument("--train_path", type=str, required=True,
help="Path of the trainset.")
parser.add_argument("--dev_path", type=str, required=True,
help="Path of the devset.")
parser.add_argument("--test_path", default=None, type=str,
help="Path of the testset.")
parser.add_argument("--config_path", default="models/bert/base_config.json", type=str,
help="Path of the config file.")
# Model options.
model_opts(parser)
# Optimization options.
optimization_opts(parser)
# Training options.
training_opts(parser)
def infer_opts(parser):
# Path options.
parser.add_argument("--load_model_path", default=None, type=str,
help="Path of the input model.")
parser.add_argument("--test_path", type=str, required=False,
help="Path of the testset.")
parser.add_argument("--prediction_path", type=str, required=False,
help="Path of the prediction file.")
parser.add_argument("--config_path", type=str, required=False,
help="Path of the config file.")
# Model options.
model_opts(parser)
# Inference options.
parser.add_argument("--batch_size", type=int, default=64,
help="Batch size.")
parser.add_argument("--seq_length", type=int, default=128,
help="Sequence length.")
def tokenizer_opts(parser):
parser.add_argument("--tokenizer", choices=["bert", "bpe", "char", "space", "xlmroberta", "image", "text_image", "virtual"], default="bert",
help="Specify the tokenizer."
"Original Google BERT uses bert tokenizer."
"Char tokenizer segments sentences into characters."
"Space tokenizer segments sentences into words according to space."
"Original XLM-RoBERTa uses xlmroberta tokenizer."
)
parser.add_argument("--vocab_path", default=None, type=str,
help="Path of the vocabulary file.")
parser.add_argument("--merges_path", default=None, type=str,
help="Path of the merges file.")
parser.add_argument("--spm_model_path", default=None, type=str,
help="Path of the sentence piece model.")
parser.add_argument("--do_lower_case", choices=["true", "false"], default="true",
help="Whether to lower case the input")
parser.add_argument("--vqgan_model_path", default=None, type=str,
help="Path of the taming transformers (vqgan).")
parser.add_argument("--vqgan_config_path", default=None, type=str,
help="Path of the vqgan config file.")
def tgt_tokenizer_opts(parser):
parser.add_argument("--tgt_tokenizer", choices=["bert", "bpe", "char", "space", "xlmroberta"], default="bert",
help="Specify the tokenizer for target side.")
parser.add_argument("--tgt_vocab_path", default=None, type=str,
help="Path of the target vocabulary file.")
parser.add_argument("--tgt_merges_path", default=None, type=str,
help="Path of the target merges file.")
parser.add_argument("--tgt_spm_model_path", default=None, type=str,
help="Path of the target sentence piece model.")
parser.add_argument("--tgt_do_lower_case", choices=["true", "false"], default="true",
help="Whether to lower case the target input")
def deepspeed_opts(parser):
parser.add_argument("--deepspeed", action="store_true",
help=".")
parser.add_argument("--deepspeed_config", default="models/deepspeed_config.json", type=str,
help=".")
parser.add_argument("--deepspeed_checkpoint_activations", action='store_true',
help="Checkpoint activation to allow for training with larger models, sequences, and batch sizes.")
parser.add_argument("--deepspeed_checkpoint_layers_num", type=int, default=1,
help="chunk size (number of layers) for checkpointing.")
parser.add_argument("--local_rank", type=int, required=False)
def adv_opts(parser):
parser.add_argument("--use_adv", action="store_true",
help=".")
parser.add_argument("--adv_type", choices=["fgm", "pgd"], default="fgm",
help="Specify the adversal training type.")
parser.add_argument("--fgm_epsilon", type=float, default=1e-6,
help="Epsilon for FGM.")
parser.add_argument("--pgd_k", type=int, default=3,
help="Steps for PGD.")
parser.add_argument("--pgd_epsilon", type=float, default=1.,
help="Epsilon for PGD.")
parser.add_argument("--pgd_alpha", type=float, default=0.3,
help="Alpha for PGD.")
|