Spaces:
Runtime error
Runtime error
""" | |
This script provides an exmaple to wrap TencentPretrain for generation. | |
Given the beginning of a text, language model generates the rest. | |
""" | |
import sys | |
import os | |
import argparse | |
import torch | |
import torch.nn.functional as F | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(tencentpretrain_dir) | |
from tencentpretrain.embeddings import * | |
from tencentpretrain.encoders import * | |
from tencentpretrain.targets import * | |
from tencentpretrain.utils.constants import * | |
from tencentpretrain.utils import * | |
from tencentpretrain.utils.config import load_hyperparam | |
from tencentpretrain.model_loader import load_model | |
from tencentpretrain.opts import infer_opts, tokenizer_opts | |
from tqdm import tqdm | |
class GenerateLm(torch.nn.Module): | |
def __init__(self, args): | |
super(GenerateLm, self).__init__() | |
self.embedding = Embedding(args) | |
for embedding_name in args.embedding: | |
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab)) | |
self.embedding.update(tmp_emb, embedding_name) | |
self.encoder = str2encoder[args.encoder](args) | |
self.target = Target() | |
self.target.update(LmTarget(args, len(args.tokenizer.vocab)), "lm") | |
def forward(self, src, seg): | |
emb = self.embedding(src, seg) | |
output = self.encoder(emb, seg) | |
output = self.target.lm.output_layer(output) | |
return output | |
def top_k_top_p_filtering(logits, top_k, top_p): | |
top_k = min(top_k, logits.size(-1)) # Safety check | |
if top_k > 0: | |
# Remove all tokens with a probability less than the last token of the top-k | |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
logits[indices_to_remove] = -float("Inf") | |
if top_p > 0.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) | |
# Remove tokens with cumulative probability above the threshold | |
sorted_indices_to_remove = cumulative_probs > top_p | |
# Shift the indices to the right to keep also the first token above the threshold | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
indices_to_remove = sorted_indices[sorted_indices_to_remove] | |
logits[indices_to_remove] = -float("Inf") | |
return logits | |
def build_visorgpt(model_path, | |
model_config, | |
vocab_path='TencentPretrain/models/google_uncased_en_coord_vocab.txt'): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
infer_opts(parser) | |
tokenizer_opts(parser) | |
parser.add_argument("--top_k", type=int, default=70) | |
parser.add_argument("--top_p", type=float, default=0) | |
parser.add_argument("--temperature", type=float, default=1.0) | |
args = parser.parse_args() | |
args.target = "lm" | |
args.batch_size = 1 | |
args.load_model_path = model_path | |
args.config_path = model_config | |
args.vocab_path = vocab_path | |
args = load_hyperparam(args) | |
args.seq_length = 1024 | |
args.tokenizer = str2tokenizer[args.tokenizer](args) | |
model = GenerateLm(args) | |
model = load_model(model, args.load_model_path).cuda() | |
model.eval() | |
return args, model | |
def gen_sequence(args, model, input_text): | |
lines = [input_text] | |
generated_texts = [] | |
for line in tqdm(lines): | |
src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(line)) | |
seg = [1] * len(src) | |
beginning_length = len(src) | |
if len(src) > args.seq_length: | |
src = src[:args.seq_length] | |
seg = seg[:args.seq_length] | |
src_tensor, seg_tensor = torch.LongTensor([src]).cuda(), torch.LongTensor([seg]).cuda() | |
for i in range(args.seq_length - beginning_length): | |
output = model(src_tensor, seg_tensor) | |
next_token_logits = output[0][-1] / args.temperature | |
filtered_logits = top_k_top_p_filtering(next_token_logits, args.top_k, args.top_p) | |
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1).cuda() | |
src_tensor = torch.cat([src_tensor, next_token.view(1, 1)], dim=1) | |
seg_tensor = torch.cat([seg_tensor, torch.tensor([[1]]).cuda()], dim=1) | |
# generated_texts.append(line) | |
generated_sentence = " ".join( | |
args.tokenizer.convert_ids_to_tokens([token_id.item() for token_id in src_tensor[0]]) | |
) | |
generated_texts.append(generated_sentence) | |
return generated_texts | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
infer_opts(parser) | |
parser.add_argument("--top_k", type=int, default=70) | |
parser.add_argument("--top_p", type=float, default=0) | |
parser.add_argument("--temperature", type=float, default=1.0) | |
parser.add_argument("--save_dir", type=str, default='predictions') | |
tokenizer_opts(parser) | |
args = parser.parse_args() | |
args.target = "lm" | |
args.batch_size = 1 | |
args = load_hyperparam(args) | |
args.tokenizer = str2tokenizer[args.tokenizer](args) | |
model = GenerateLm(args) | |
model = load_model(model, args.load_model_path).cuda() | |
model.eval() | |
with open(args.test_path, mode="r", encoding="utf-8") as f: | |
lines = [i.strip() for i in f.readlines()] | |
generated_texts = [] | |
for line in tqdm(lines): | |
src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(line)) | |
seg = [1] * len(src) | |
beginning_length = len(src) | |
if len(src) > args.seq_length: | |
src = src[:args.seq_length] | |
seg = seg[:args.seq_length] | |
src_tensor, seg_tensor = torch.LongTensor([src]).cuda(), torch.LongTensor([seg]).cuda() | |
for i in range(args.seq_length - beginning_length): | |
output = model(src_tensor, seg_tensor) | |
next_token_logits = output[0][-1] / args.temperature | |
filtered_logits = top_k_top_p_filtering(next_token_logits, args.top_k, args.top_p) | |
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1).cuda() | |
src_tensor = torch.cat([src_tensor, next_token.view(1, 1)], dim=1) | |
seg_tensor = torch.cat([seg_tensor, torch.tensor([[1]]).cuda()], dim=1) | |
# generated_texts.append(line) | |
generated_sentence = " ".join( | |
args.tokenizer.convert_ids_to_tokens([token_id.item() for token_id in src_tensor[0]]) | |
) | |
generated_texts.append(generated_sentence) | |
# import ipdb | |
# ipdb.set_trace() | |
if not os.path.exists(args.save_dir): | |
os.makedirs(args.save_dir) | |
with open(args.save_dir + '/' + args.prediction_path, mode="w", encoding="utf-8") as f: | |
for t in generated_texts: | |
f.write(t + "\n") |