Spaces:
Runtime error
Runtime error
""" | |
This script provides an example to wrap TencentPretrain for C3 (a multiple choice dataset) inference. | |
""" | |
import sys | |
import os | |
import argparse | |
import torch | |
import torch.nn as nn | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(tencentpretrain_dir) | |
from tencentpretrain.utils.constants import * | |
from tencentpretrain.utils import * | |
from tencentpretrain.utils.config import load_hyperparam | |
from tencentpretrain.model_loader import load_model | |
from tencentpretrain.opts import infer_opts, tokenizer_opts | |
from finetune.run_classifier import batch_loader | |
from finetune.run_c3 import MultipleChoice, read_dataset | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
infer_opts(parser) | |
parser.add_argument("--max_choices_num", default=4, type=int, | |
help="The maximum number of cadicate answer, shorter than this will be padded.") | |
tokenizer_opts(parser) | |
args = parser.parse_args() | |
# Load the hyperparameters from the config file. | |
args = load_hyperparam(args) | |
# Build tokenizer. | |
args.tokenizer = str2tokenizer[args.tokenizer](args) | |
# Build classification model and load parameters. | |
model = MultipleChoice(args) | |
model = load_model(model, args.load_model_path) | |
# For simplicity, we use DataParallel wrapper to use multiple GPUs. | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(device) | |
if torch.cuda.device_count() > 1: | |
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) | |
model = torch.nn.DataParallel(model) | |
dataset = read_dataset(args, args.test_path) | |
src = torch.LongTensor([example[0] for example in dataset]) | |
tgt = torch.LongTensor([example[1] for example in dataset]) | |
seg = torch.LongTensor([example[2] for example in dataset]) | |
batch_size = args.batch_size | |
instances_num = src.size()[0] | |
print("The number of prediction instances: ", instances_num) | |
model.eval() | |
with open(args.test_path) as f: | |
data = json.load(f) | |
question_ids = [] | |
for i in range(len(data)): | |
questions = data[i][1] | |
for question in questions: | |
question_ids.append(question["id"]) | |
index = 0 | |
with open(args.prediction_path, "w") as f: | |
for i, (src_batch, _, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)): | |
src_batch = src_batch.to(device) | |
seg_batch = seg_batch.to(device) | |
with torch.no_grad(): | |
_, logits = model(src_batch, None, seg_batch) | |
pred = (torch.argmax(logits, dim=1)).cpu().numpy().tolist() | |
for j in range(len(pred)): | |
output = {} | |
output["id"] = question_ids[index] | |
index += 1 | |
output["label"] = int(pred[j]) | |
f.write(json.dumps(output)) | |
f.write("\n") | |
if __name__ == "__main__": | |
main() | |