Spaces:
Runtime error
Runtime error
""" | |
This script provides an example to wrap TencentPretrain for ChID (a multiple choice dataset) inference. | |
""" | |
import sys | |
import os | |
import torch | |
import json | |
import argparse | |
import collections | |
import numpy as np | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(tencentpretrain_dir) | |
from tencentpretrain.utils.constants import * | |
from tencentpretrain.utils.tokenizers import * | |
from tencentpretrain.utils.config import load_hyperparam | |
from tencentpretrain.model_loader import load_model | |
from tencentpretrain.opts import infer_opts | |
from finetune.run_classifier import batch_loader | |
from finetune.run_c3 import MultipleChoice | |
from finetune.run_chid import read_dataset | |
def postprocess_chid_predictions(results): | |
index2tag = {index: tag for index, (tag, logits) in enumerate(results)} | |
logits_matrix = [logits for _, logits in results] | |
logits_matrix = np.transpose(np.array(logits_matrix)) | |
logits_matrix_list = [] | |
for i, row in enumerate(logits_matrix): | |
for j, value in enumerate(row): | |
logits_matrix_list.append((i, j, value)) | |
else: | |
choices = set(range(i + 1)) | |
blanks = set(range(j + 1)) | |
logits_matrix_list = sorted(logits_matrix_list, key=lambda x: x[2], reverse=True) | |
results = [] | |
for i, j, v in logits_matrix_list: | |
if (j in blanks) and (i in choices): | |
results.append((i, j)) | |
blanks.remove(j) | |
choices.remove(i) | |
results = sorted(results, key=lambda x: x[1], reverse=False) | |
results = [[index2tag[j], i] for i, j in results] | |
return results | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
infer_opts(parser) | |
parser.add_argument("--vocab_path", default=None, type=str, | |
help="Path of the vocabulary file.") | |
parser.add_argument("--spm_model_path", default=None, type=str, | |
help="Path of the sentence piece model.") | |
parser.add_argument("--max_choices_num", default=10, type=int, | |
help="The maximum number of cadicate answer, shorter than this will be padded.") | |
args = parser.parse_args() | |
# Load the hyperparameters from the config file. | |
args = load_hyperparam(args) | |
# Build tokenizer. | |
args.tokenizer = CharTokenizer(args) | |
# Build classification model and load parameters. | |
model = MultipleChoice(args) | |
model = load_model(model, args.load_model_path) | |
# For simplicity, we use DataParallel wrapper to use multiple GPUs. | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(device) | |
if torch.cuda.device_count() > 1: | |
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) | |
model = torch.nn.DataParallel(model) | |
dataset = read_dataset(args, args.test_path, None) | |
model.eval() | |
batch_size = args.batch_size | |
results_final = [] | |
dataset_by_group = {} | |
print("The number of prediction instances: ", len(dataset)) | |
for example in dataset: | |
if example[-1] not in dataset_by_group: | |
dataset_by_group[example[-1]] = [example] | |
else: | |
dataset_by_group[example[-1]].append(example) | |
for group_index, examples in dataset_by_group.items(): | |
src = torch.LongTensor([example[0] for example in examples]) | |
tgt = torch.LongTensor([example[1] for example in examples]) | |
seg = torch.LongTensor([example[2] for example in examples]) | |
index = 0 | |
results = [] | |
for i, (src_batch, _, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)): | |
src_batch = src_batch.to(device) | |
seg_batch = seg_batch.to(device) | |
with torch.no_grad(): | |
_, logits = model(src_batch, None, seg_batch) | |
pred = torch.argmax(logits, dim=1) | |
pred = pred.cpu().numpy().tolist() | |
for j in range(len(pred)): | |
results.append((examples[index][-2], logits[index].cpu().numpy())) | |
index += 1 | |
results_final.extend(postprocess_chid_predictions(results)) | |
with open(args.prediction_path, "w") as f: | |
json.dump({tag: pred for tag, pred in results_final}, f, indent=2) | |
if __name__ == "__main__": | |
main() | |